Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020 ## A three-dimensional porous MoS₂-PVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents Pin Song^{a,*}, Jun Di^a, Haiping Chen^b, Sirui Zhao^c, Cao Wu^d, Xun Cao^a, Meiling Wang^e, Jun Xiong^{f,*}, Xinli Ye^d ## **Supporting figures** **Fig S1.** Optical photograph of MoS₂ powder to 3D MoS₂-PVP aerogel. Fig S2. SEM images of (a) MoS₂, (b) MoS₂-PVP. Fig S3. Photographs of 3D MoS₂-PVP aerogels with different concentrations of MoS₂. (a) 0, (b) 10, (c) 20 mg cm⁻³. Fig S4. (a-b) Photographs of BN-PVP aerogels and CNTs-PVP aerogels. Fig S5. Optical photograph of a water droplet on the 3D MoS₂-PVP aerogel surface. Fig S6. Compressive curves of 3D MoS₂-PVP aerogel with different concentrations of MoS₂. (a) 5, (b) 10, (c) 15, (d) 20 mg cm⁻³. Fig S7. The Adsorption capacity of 3D MoS₂-PVP aerogels with different concentrations of MoS₂. **Fig S8.** Photographs of the squeezing process of 3D MoS₂-PVP aerogel. **Fig S9.** Photographs of the distillation process of 3D MoS₂-PVP aerogel. ## **Supporting table** Table S1. The specific surface area of 3D MoS₂-PVP aerogels with different concentrations of MoS₂. | Concentration (mg cm ⁻³) | 0 | 5 | 10 | 15 | 20 | |---|------|------|------|------|------| | Specific surface area (m ² g ⁻¹) | 44.5 | 75.2 | 79.6 | 83.5 | 90.4 | ## **Supporting Movie** Movie S1