Electronic Supplementary Information

New findings and current controversies on oxidation of benzyl alcohol by a copper complex

Zahra Zand,^{*a*} Jitendra Pal Singh,^b Robabeh Bagheri,^c Junfeng Cui,^{d,e} Keun Hwa Chae,^b Zhenlun Song^c and Mohammad Mahdi Najafpour^{a, f, g*}

^aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^bAdvanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea

^cKey Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

^dKey Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China

^eSurface Protection Research Group, Surface Department, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 519 Zhuangshi Road, Ningbo 315201, China

^{*f*}Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran

^gResearch Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

*Corresponding author; Phone: (+98) 24 3315 3201; E-mail: mmnajafpour@iasbs.ac.ir

Experimental

Materials and methods

All reagents and solvents were purchased from the commercial sources and were used without a further purification: 1,10-Phenanthroline monohydrate (Sigma-Aldrich), Cu(ClO₄)₂· $6H_2O$ (Sigma-Aldrich) and acetonitrile (Merck).

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out with LEO 1430VP and Philips CM30 devices, respectively. The X-ray powder patterns were recorded with a Bruker D8 ADVANCE diffractometer (CuK_{α} radiation).

X-ray absorption spectra of these materials at Cu K-edge were measured at 1D XRS KIST-PAL beamline at Pohang Light Source (PLS, Pohang, Republic of Korea), operating at 3.0 GeV with a storage current of 300 mA. The beamline is a bending magnet X-ray Scattering (XRS) beamline which uses an Si(111) double crystal monochromator to give a wide range of monochromatic energies (4–16 keV). To measure XANES spectra of these materials, higher harmonics were removed by detuning incident beam intensity upto 60% of maximum intensity. Three ionization chambers filled with He and N₂ gases were used to record the intensity of the incident and the transmitted X-rays, respectively. The materials are placed between the first and second ionization chamber, while a reference foil (Cu) for energy calibration is placed between the second and third ionization chamber. Under stationary conditions, XANES measurements were performed for the Cu K-edge in a step scanning mode. Fourier transform infrared (FTIR) spectra were recorded using the Bruker FT-IR spectrometer. A sample pellet was prepared with mixture of collected solid and KBr.

After 90 minutes under reaction, the mixture was filtered, and the solid was washed 4 times with DI water and then particles were removed by the centrifuge. The collected solid was dried in 50 °C. For measurement DLS, the collected solid sonicated in water for 15 min, and DLS measurements were carried out at 25.0 °C by using a Malvern DLS instrument.

Fig. S1 Color changes during the reaction. Reagents and conditions: **1** (5% mmol), benzylalcohole (1 mmol), K_2CO_3 (2 eq) temperature (80 °C), Toluene (5 ml), and under O_2 .

Fig. S2 Color changes during 90 minutes. Reagents and conditions: CuCl (5% mmol), 1, 10 phenantroline (%5), DIAD (%5) benzylalcohole (1 mmol), K_2CO_3 (2 eq), temperature (80 °C), and Toluene (5 ml) under O_2 .

Fig. S3 SEM images of the centrifuged particles from the reaction of **1** under Marko's conditions.

Fig. S4 TEM images of the centrifuged particles from the reaction of ${\bf 1}$ under Marko's conditions.

Fig. S5 UV-Vis spectroscopy of 2 (3.0 mM) before and after adding KOH (the final concentration is 2.0 M).

Table S1 benzyl alcohol oxidation by the catalyst, and the centrifuged nanoparticles fromthe reaction

Entr y	Catalyst	Benzyl alcohol (%)	Benzald ehyde (%)	Condition
1	CuCl	22	78	CH ₂ OH Catal (5%), Phenanthroline(5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ 90 min
2	CuO	99-95	1-5	$\begin{array}{c} CH_2OH \\ \hline \\ K_2CO_3 (2 \text{ eq}), \text{ Toluene (5 ml), 80 °C,} \\ O_2, 90 \text{ min} \end{array} \xrightarrow{H} \begin{array}{c} O \\ \\ O \end{array}$
3	CuO	99-95	1-5	$ \begin{array}{c} $
4	Complex (2)	99-95	1-5	CH ₂ OH Catal (5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ , 90 min
5	Complex (1)	75	25	CH ₂ OH Catal (5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ , 90 min
6	centrifuged solid from the reaction of entry 1	62	38	CH ₂ OH Catal (5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ , 90 min
7	Cu(ClO ₄) ₂	85	15	CH ₂ OH Catal (5%), Phenanthroline(5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ 90 min
8	CuCl	99-95	1-5	CH ₂ OH Catal (5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ , 90 min
9	Cul	99-95	1-5	CH ₂ OH Catal (5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ , 90 min
10	Cul	22	78	$\begin{array}{c} CH_2OH \\ \hline \\ Catal (5\%), Phenanthroline(5\%), DIAD (5\%) \\ \hline \\ K_2CO_3 (2 \text{ eq}), Toluene (5 \text{ ml}), 80 \ ^{\circ}C, O_2 \\ 90 \text{ min} \end{array}$

11	K ₂ Cu(CO ₃) ₂	99-95	1-5	$\begin{array}{c} CH_2OH \\ \hline \\ Catal (5\%), DIAD (5\%) \\ \hline \\ K_2CO_3 (2 \text{ eq}), Toluene (5 \text{ ml}), \\ 80 \ ^\circC, \ O_2, 90 \text{ min} \end{array} \xrightarrow{H} \begin{array}{c} O \\ \hline \\ \\ H \end{array}$
12	K ₂ Cu(CO ₃) ₂	99-95	1-5	$\begin{array}{c} CH_2OH \\ \hline \\ Catal (5\%), Phenanthroline(5\%), DIAD (5\%) \\ \hline \\ K_2CO_3 (2 \text{ eq}), Toluene (5 \text{ ml}), 80 \ ^\circC, O_2 \\ \hline \\ 90 \text{ min} \end{array}$
13	CuCO ₃	99-95	1-5	$\begin{array}{c} CH_2OH \\ \hline \\ Catal (5\%), DIAD (5\%) \\ \hline \\ K_2CO_3 (2 \text{ eq}), Toluene (5 \text{ ml}), \\ 80 \ ^\circC, \ O_2, 90 \text{ min} \end{array} \xrightarrow{H} \begin{array}{c} O \\ \hline \\ \\ H \end{array}$
14	CuCO ₃	99-95	1-5	CH ₂ OH Catal (5%), Phenanthroline(5%), DIAD (5%) K ₂ CO ₃ (2 eq), Toluene (5 ml), 80 °C, O ₂ 90 min