SUPPLEMENTARY INFORMATION

Matrix	Modifier	Eletrolyte	% (w/w) ^a	$\Delta E_{1/2}$ (mV) ^b	%H2O2	Ref.
	Sudan Red 7B	0.1 M K ₂ SO ₄	0.5	~50	86.2	1
	methyl-p-benzoquinone	دد	0.5	~20	85.5	1
	anthraflavic acid		0.5	~10	83.3	1
	anthraquinone-2-	دد	2.0	~0	83.8	1
	carboxylic acid					
PL6C	tert-butyl-anthraquinone	0.1 M K ₂ SO ₄		~50	89.6	2
	tert-outyr-antinaquinone	$0.1 \text{ M} \text{H}_2\text{SO}_4$	1.0	50	07.0	
	1,2-	دد	1.0	~0	95.0	3
	dihydroxyanthraquinone		1.0	Ū	98.0	
	2-methyl-1,4-	"	0.5	~80	75.0	3
	naphthoquinone					
	acenaphthylene-1,2-	"	1.0	~20	84 0	3
	dione				0.0	
	2-ethylanthraquinone	"	10	~400	*	4
		0.1 M K ₂ SO ₄				
GC	Azobenzene	$0.1 \text{ M H}_2\text{SO}_4$	10	~300	*	5
		(pH 1.0)				
	Antraquinone	0.1 M KOH	*	~15	95-100	6
	2,6-		2.6	~380	*	7
	diaminoanthraquinone	0,2 M NaCI				
GRA	5-hydroxy-1,4-	0.5 M CHCOON₂	*	~160	*	8
	naphthoquinone					

Table S1. Properties of carbon-based materials modified with catalytic organic compounds for ORR towards H_2O_2 production.

a- Percentage of the modifier into the matrix in the weight / weight ratio

b- The values are calculated versus the reduction potential of unmodified electrode

*- Unspecified values

Table S2. Experimental and theoretical values of dipole moment (in Debye, D) for 1,4naphtoquinone in benzene, using B3LYP, CAM-B3LYP, different basis sets and C-PCM method

B3LYP	Experimental Dipole Moment = 1.21 D			
Basis set	B3LYP	CAM-B3LYP		
6-311G	1.82	1.69		
6-311++G	1.97	1.83		
6-311G(2d,2p)	1.53	1.42		
6-311G(3d,3p)	1.54	1.43		
6-311++G(2d,2p)	1.70	1.60		
6-311++G(3d,3p)	1.68	1.58		
cc-pvqz	1.65	1.54		
cc-pvtz	1.60	1.50		
def2-TZVPD	1.69	1.57		

Table S3. Values of Laplacian of electron density $(\nabla^2 \rho)$ for the hydrogen bonds in structures 1 and 2

	BCPs	∇ ² ρ (a.u.)
Structure 1	H67 – O68	0.04
Structure 2	H85 – O79	0.16
Structure 3	H87 – O77	0.03

Figure S1. BCPs related to the Laplacian of electron density $(\nabla^2 \rho)$ for structures 1 (A), 2 (B) and 3 (C).

Figure S2. Pictures and contact angle measurements of a 3 μ L ultrapure water drop on microlayers of PL6C (**A**), 0.5% NQE/C (**B**), 1.0% NQE/C (**C**), 3.0% NQE/C (**D**) e 5.0% NQE/C (**E**).

Table S4. Kinetic velocity of H ₂ O ₂ electrogeneration from ORR in acid medium under
the different current densities investigated

k _{app} values (mg L ⁻¹ min ⁻¹)						
Current	10	25	50	75	100	150
density	<i>mA cm</i> ⁻²					
PL6C	0.595	1.410	3.419	4.477	4.595	4.426
1.0% NQE/C	0.657	1.514	4.126	5.302	4.871	4.944

Advanced Oxidative Process	k _{app} (min ⁻¹) 1.0% NQE-GDE	R ² Curve
UVC	0.3 x10 ⁻³	0.9973
AO	6.6×10^{-3}	0.9887
AO-H ₂ O ₂	8.1×10^{-3}	0.9909
AO-H ₂ O ₂ /UVC	8.3×10^{-3}	0.9896
EF	$11.4 \text{ x} 10^{-3}$	0.9709
PEF	16.4×10^{-3}	0.9761

Table S5. Kinetic constant of PRM degradation calculated based on the different AOP applied in acid medium at j=75 mA cm⁻².

Figure S3. PRM chromatographic peaks related to 6 h of PEF degradation process conducted on 1.0 % NQE modified GDE using $0.1 \text{ mol } L^{-1} \text{ K}_2\text{SO}_4$ under pH 2, with UVC light and $0.15 \text{ mmol } L^{-1}$ of Fe²⁺.

Figure S4. Paracetamol analytical curve developed by HPLC-UV using the external standard method in the concentration range of 0.5 to 100 mg L⁻¹.

References

- J. Moreira, V. Bocalon Lima, L. Athie Goulart and M. R. V. Lanza, *Appl. Catal. B Environ.*, 2019, **248**, 95–107.
- 2 R. B. Valim, R. M. Reis, P. S. Castro, A. S. Lima, R. S. Rocha, M. Bertotti and M. R. V Lanza, *Carbon N. Y.*, 2013, **61**, 236–244.
- R. S. Rocha, R. B. Valim, L. C. Trevelin, J. R. Steter, J. F. Carneiro, J. C. Forti,
 R. Bertazzoli and M. R. V. Lanza, *Electrocatalysis*, 2020, 11, 338–346.
- 4 J. C. Forti, R. S. Rocha, M. R. V. Lanza and R. Bertazzoli, *J. Electroanal. Chem.*, 2007, **601**, 63–67.
- 5 J. C. Forti, J. A. Nunes, M. R. V. Lanza and R. Bertazzoli, *J. Appl. Electrochem.*, 2007, **37**, 527–532.
- 6 A. Sarapuu, K. Vaik, D. J. Schiffrin and K. Tammeveski, *J. Electroanal. Chem.*, 2003, **541**, 23–29.
- 7 L. Roullier, E. Waldner and E. Laviron, J. Electroanal. Chem., 1985, 191, 59–73.
- 8 M. C. Pham and J. E. Dubois, J. Electroanal. Chem., 1986, 199, 153–164.