Electronic Supplementary Information

Lithium-Ion Battery Performance Enhanced by Combination of Si Thin Flake Anode and Binary Ionic Liquid System

Kei Hosoya,^a Toshiki Kamidaira,^a Tetsuya Tsuda,^{*a} Akihito Imanishi,^b Masakazu Haruta,^c Takayuki Doi,^c Minoru Inaba,^c and Susumu Kuwabata^{*a}

^aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan E-mail: kuwabata@chem.eng.osaka-u.ac.jp; ttsuda@chem.eng.osaka-u.ac.jp

^bDepartment of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

^cDepartment of Molecular Chemistry and Biochemistry, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0321, Japan

Supplementary Information Contents:

Figure S1	p. 2
Table S1-S3	p. 3
Captions for Movie S1 and S2	p. 6
References	p. 7

Fig. S1 XPS spectra for S-2p of the Si thin flake composite anodes after five charge-discharge cycles. The charge-discharge test was conducted by a CC mode at 0.5 C, and the cut-off voltages were -3.88 V and -2.40 V (*vs.* LiCoO₂). The electrolytes were (a) 83.3–16.7 mol% [C₂mim][FSA]–Li[TFSA], (b) 83.3–16.7 mol% [C₂mim][FSA]–Li[FSA], and (c) 50.0–50.0 mol% [C₂mim][FSA]–Li[FSA].

IL electrolytes	d / g cm ⁻³
83.3–16.7 mol% [C ₂ mim][FSA]–Li[TFSA]	1.51
83.3-16.7 mol% [C ₂ mim][FSA]-Li[FSA]	1.49
50.0-50.0 mol% [C2mim][FSA]-Li[FSA]	1.62

Table S1 Densities of the IL electrolytes employed in this study at 298 K $\,$

II electrolytes	Composition ratio / at%				
	LiF	Li ₃ N	Li_2S	Li_2SO_4	$-SO_2R$
83.3–16.7 mol%	20.6	2.0	4.8	23.0	49.5
$[C_2 \text{mim}][FSA] = L1[FFSA]$ 83.3–16.7 mol%					
[C ₂ mim][FSA]–Li[FSA]	63.3	0.9	5.8	18.8	11.3
50.0-50.0 mol%	45.8	2.9	3.8	27.9	19.7
[C ₂ mim][FSA]–Li[FSA]					

Table S2 Chemical species contained in the SEI films formed in different ILelectrolytes and their composition ratios

	Li ion conductivity $\sigma / S \ cm^{-1}$	Shear modulus G / GPa
LiF ^{S1,S2}	6 × 10 ⁻⁶ (323 K)	55
Li ₃ N ^{83,84}	1 × 10 ⁻³ (300 K)	64
Li ₂ SO ₄ S5,S6	5 × 10 ⁻⁸ (298 K)	20
Li ₂ S ^{S7-S9}	> 10 ⁻¹¹ (298 K)	32~35
LiPON ^{S10}	2 × 10 ⁻⁶ (298 K)	31

Table S3 Summary of Li-ion conductivities and shear modulus for

 potential SEI components

Captions for Movie S1 and S2

Movie S1 Video clip of a binder free Si thin flake anode in the *operando* SEM observation cell with a 83.3–16.7 mol% [C₂mim][FSA]–Li[TFSA] IL electrolyte during the fourth charge process. The charge process was conducted in a CC/CV mode with cut-off voltages ranging between -3.88 V and -2.40 V (*vs.* LiCoO₂). The CC rates for charge and discharge were 1/2 C. The cut-off current density was 1/20 C. The video clip plays at 700 × speed.

Movie S2 Video clip of a binder free Si thin flake anode in the *operando* SEM observation cell with a $83.3-16.7 \text{ mol}\% [C_2\text{mim}][FSA]-Li[FSA]$ IL electrolyte during the fourth charge process. The charge process was conducted in a CC/CV mode with cut-off voltages ranging between -3.88 V and -2.40 V (*vs.* LiCoO₂). The CC rates for charge and discharge were 1/2 C. The cut-off current density was 1/20 C. The video clip plays at $700 \times$ speed.

References

- S1 C. Li, L. Gu and J. Maier, Adv. Funct. Mater., 2012, 22, 1145-1149.
- S2 J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W. A. Henderson, Y. Zhang and J.-G. Zhang, *Nano Energy*, 2015, 15, 135-144.
- S3 U. v. Alpen, A. Rabenau and G. H. Talat, Appl. Phys. Lett., 1977, 30, 621-623.
- S4 W. Li, J.-f. Chen and T. Wang, *Physica B*, 2010, 405, 400-403.
- S5 N. Kuwata, N. Iwagami and J. Kawamura, Solid State Ionics, 2009, 180, 644-648.
- S6 K. T. Schutt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko and K. R. Muller, J. Chem. Phys., 2018, 148, 241722.
- S7 H. Khachai, R. Khenata, A. Bouhemadou, A. H. Reshak, A. Haddou, M. Rabah and B. Soudini, *Solid State Commun.*, 2008, 147, 178-182.
- S8 Z. Lin, Z. Liu, N. J. Dudney and C. Liang, ACS Nano, 2013, 7, 2829-2833.
- S9 S. Lorger, D. Fischer, R. Usiskin and J. Maier, J. Vac. Sci. Technol., A, 2019, 37, 061515.
- S10 X. H. Yu, J. B. Bates, G. E. Jellison and F. X. Hart, *J. Electrochem. Soc.*, 1997, **144**, 524-532.