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Pisarenko line and Lorenz number 

Assuming that the dominant mechanism of charge carrier scattering is by acoustic 
phonons, one obtains the following equations for Seebeck coefficient and carrier density 
[1]: 
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Where 𝑘𝑘𝐵𝐵 is the Boltzmann’s constant, 𝑒𝑒 is the elementary charge, T is the absolute 
temperature, 𝑚𝑚∗ is the effective mass, ℎ is the Planck constant, 𝜂𝜂 is the reduced Fermi 
energy (electrochemical potential), and 𝐹𝐹𝑗𝑗(𝜂𝜂) is the Fermi integral: 
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Theoretical curves are generated by calculating 𝑆𝑆 versus 𝜂𝜂, and 𝑛𝑛 versus 𝜂𝜂. From that 
data, the Pisarenko relation, 𝑆𝑆 versus 𝑛𝑛, can be represented. 

 

The total thermal conductivity (𝜅𝜅) is the sum of electronic thermal conductivity (𝜅𝜅𝑒𝑒) and 
lattice thermal conductivity (𝜅𝜅𝑙𝑙), and can be written in this way: 

𝜅𝜅𝑙𝑙 = 𝜅𝜅 − 𝜅𝜅𝑒𝑒 = 𝜅𝜅 − 𝐿𝐿𝐿𝐿𝐿𝐿 

Where L is the Lorenz number, σ is the electrical conductivity and T is the absolute 
temperature. 

Finally, the Lorenz number can be calculated using the expression: 
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Modeling of lattice thermal conductivity 

In 1959, J. Callaway proposed a phenomenological model about the lattice thermal 
conductivity [2], which can be expressed as: 
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Where 𝑥𝑥 = ℏ𝜔𝜔 𝑘𝑘𝐵𝐵𝑇𝑇⁄  is the reduced phonon frequency, 𝑘𝑘𝐵𝐵 is the Boltzmann constant, ℏ 
is the reduced Planck constant, Θ𝐷𝐷 is the Debye temperature, 𝜈𝜈 is the sound velocity, and 
𝜏𝜏 is the effective relaxation time. In this work, 𝜏𝜏 is expressed as follows [3]: 
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Where 𝑑𝑑 is the grain size and 𝜈𝜈/𝑑𝑑 represents boundary scattering. 𝐴𝐴 is the pre-factor of 
point defect scattering relaxation time, 𝐵𝐵 is the prefactor of phonon-phonon Umklapp 
scattering relaxation time, and C is the prefactor of electron-phonon scattering relaxation 
time. Some of these parameters can be found in literature [4], and the rest of them can be 
obtained through fitting the prediction result to the experimental lattice thermal 
conductivity values. 

 

Table S1 - The parameters used for calculation of the lattice thermal conductivity 
prediction of SnS sample. 

Parameter Value 
A (10-42 s3) 1.88 

B (10-17 s/K) 3.57 
Debye temperature 𝚯𝚯𝐃𝐃 (K) 270 

Sound velocity 𝝂𝝂 (m/s) 2424 
Average grain size 𝚯𝚯𝐃𝐃 (μm) 10 

C (10-16 s) 2 
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