

ELECTRONIC SUPPLEMENTARY INFORMATION FOR

High thermoelectric performance of rapidly microwave-synthesized $\text{Sn}_{1-\delta}\text{S}$

Jesús Prado-Gonjal,^{a,b*} Javier Gainza,^b Isabel Aguayo,^a Óscar Juan Durá,^c Sara Rodríguez-Pérez,^a Federico Serrano-Sánchez,^b Norbert M. Nemes,^d María Teresa Fernández-Díaz,^e José Antonio Alonso,^b Emilio Morán^a

^a Departamento de Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid, Spain

^b Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, E-28049, Madrid, Spain

^c Departamento de Física Aplicada, Universidad de Castilla-La Mancha, Ciudad Real, E-13071, Spain

^d Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain

^e Institute Laue Langevin, BP 156X, Grenoble, F-38042, France

* corresponding author: jpradogo@ucm.es

Pisarenko line and Lorenz number

Assuming that the dominant mechanism of charge carrier scattering is by acoustic phonons, one obtains the following equations for Seebeck coefficient and carrier density [1]:

$$S = \frac{k_B}{e} \left[\frac{2F_1(\eta)}{F_0(\eta)} - \eta \right] \quad (1)$$

$$n = 4\pi \left(\frac{2m^*k_B T}{h^2} \right)^{3/2} F_{1/2}(\eta) \quad (2)$$

Where k_B is the Boltzmann's constant, e is the elementary charge, T is the absolute temperature, m^* is the effective mass, h is the Planck constant, η is the reduced Fermi energy (electrochemical potential), and $F_j(\eta)$ is the Fermi integral:

$$F_j(\eta) = \int_0^\infty \frac{\epsilon^j d\epsilon}{1 + \exp(\epsilon - \eta)} \quad (3)$$

Theoretical curves are generated by calculating S versus η , and n versus η . From that data, the Pisarenko relation, S versus n , can be represented.

The total thermal conductivity (κ) is the sum of electronic thermal conductivity (κ_e) and lattice thermal conductivity (κ_l), and can be written in this way:

$$\kappa_l = \kappa - \kappa_e = \kappa - L\sigma T$$

Where L is the Lorenz number, σ is the electrical conductivity and T is the absolute temperature.

Finally, the Lorenz number can be calculated using the expression:

$$L = \frac{k_B^2}{e^2} \frac{3F_0(\eta)F_2(\eta) - 4F_1(\eta)^2}{F_0(\eta)^2}$$

Modeling of lattice thermal conductivity

In 1959, J. Callaway proposed a phenomenological model about the lattice thermal conductivity [2], which can be expressed as:

$$\kappa_l = \frac{k_B}{2\pi^2\nu} \left(\frac{k_B T}{\hbar} \right)^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{\tau^{-1}(e^x - 1)^2} dx \quad (4)$$

Where $x = \hbar\omega/k_B T$ is the reduced phonon frequency, k_B is the Boltzmann constant, \hbar is the reduced Planck constant, Θ_D is the Debye temperature, ν is the sound velocity, and τ is the effective relaxation time. In this work, τ is expressed as follows [3]:

$$\tau^{-1} = A\omega^4 + B\omega^2 T e^{-\Theta_D/3T} + \frac{\nu}{d} + C\omega^2 \quad (5)$$

Where d is the grain size and ν/d represents boundary scattering. A is the pre-factor of point defect scattering relaxation time, B is the prefactor of phonon-phonon Umklapp scattering relaxation time, and C is the prefactor of electron-phonon scattering relaxation time. Some of these parameters can be found in literature [4], and the rest of them can be obtained through fitting the prediction result to the experimental lattice thermal conductivity values.

Table S1 - The parameters used for calculation of the lattice thermal conductivity prediction of SnS sample.

Parameter	Value
$A (10^{-42} \text{ s}^3)$	1.88
$B (10^{-17} \text{ s/K})$	3.57
Debye temperature Θ_D (K)	270
Sound velocity ν (m/s)	2424
Average grain size Θ_D (μm)	10
$C (10^{-16} \text{ s})$	2

References

- [1] A.F. May, G.J. Snyder, Introduction to Modeling Thermoelectric Transport at High Temperatures, in: D.M. Rowe (Ed.), Mater. Prep. Charact. Thermoelectr., CRC Press, 2012: pp. 1–18. <https://doi.org/doi:10.1201/b11891-13>.
- [2] J. Callaway, Model for lattice thermal conductivity at low temperatures, Phys. Rev. 113 (1959) 1046–1051. <https://doi.org/10.1103/PhysRev.113.1046>.
- [3] J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T.C. Chasapis, G.J. Snyder, X. Zhao, T. Zhu, Unique Role of Refractory Ta Alloying in Enhancing the Figure of Merit of NbFeSb Thermoelectric Materials, Adv. Energy Mater. 8 (2018) 1–8. <https://doi.org/10.1002/aenm.201701313>.
- [4] Asfandiyar, B. Cai, L.-D. Zhao, J.-F. Li, High thermoelectric figure of merit ZT >1 in SnS polycrystals, J. Mater. 6 (2020) 77–85. <https://doi.org/10.1016/j.jmat.2019.12.003>.