SUPPORTING INFORMATION FOR:

ROOM-TEMPERATURE APPLICATION OF VO $_2$ MICROSTRUCTURES ON RIGID AND FLEXIBLE SUBSTRATES BASED ON SYNTHESIS OF CRYSTALLINE VO $_2$ SOLUTION

Mohammad Taha^{a,b*}, Edwin L.H. Maye^c, Matthew R. Field^c, Miao Su^a, Mandeep Singh^d, and Wenyue Zou^d

^a Department of Electrical and Electronic Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia

Email: mohammad.taha@unimelb.edu.au

^{b.}RMIT University, Melbourne VIC 3000, Australia

^{c.}RMIT Microscopy & Microanalysis Facility, College of Science, Engineering and Health, RMIT University, Melbourne VIC 3000, Australia

^{d.}Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne VIC 3000, Australia

S1. COLLOIDAL SUSPENSION OF VO2

Fig. S1 shows a photograph of the VO_2 suspension synthesised used the method in Figure 1.

Fig. S1 VO₂ microstructures suspended in IPA synthesised using van der Waals substrates with inert basal planes and hydrophilic surfaces mica shown in this work.

Fig. S2 XPS survey spectra of (a) VO₂ films on mica and (b) drop-cast VO₂ microstructures on glass.

Fig. S3 X-ray diffraction (XRD) measurements for VO_2 microstructures (a) before and (b) after the delamination process.

S4. SCANNING ELECTRON MICROSCOPY (SEM) OF VO2 STRUCTURES

Fig. S4 shows SEM images of the morphology of the VO₂ thin films before the delamination process used to introduce VO₂ crystals into its solution form. The features on the surface in (d)-(f) are due to solvent droplets leaving residue before the deposition of the conductive 5nm Pt layer used before conducting SEM imaging.

Fig. S4 SEM image (15000X magnification) of (a) VO₂ film on mica. VO₂ microstructures on: (b) glass and (c) PET. (d) Cross section of VO₂ microstructures on glass (5000X magnification). (e-f) High magnification (20000X magnification) SEM image showing multiple overlapping crystals.

S5. IN-SITU TRANSMISSION ELECTRON MICROSCOPY (TEM) AND SELECTED AREA ELECTRON DIFFRACTION (SAED)

Video imaging as well as the in-situ collection of TEM and SAED patterns show both the change of morphology and electron diffraction pattern consistent with insulator-to-metal (IMT) behaviour in VO₂ microstructures.

Fig. S5 High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern before and after analysis for monoclinic VO_2 (a), (b) and (c) SAED pattern is indexed based on the JCPDS 76-0456. HRTEM and SAED pattern before and after analysis for tetragonal VO_2 (d), (e) and (f). Video Image 1. *In-situ* TEM imaging.

Video Image 2. In-situ SAED patterns imaging.