Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

1 Supplementary information

2	Luminescence and Luminescence Quenching of K ₂ Bi(PO ₄)(MoO ₄):Sm ³⁺ Phosphors for
3	Horticultural and General Lighting Applications
4	Julija Grigorjevaite ^a , Egle Ezerskyte ^a , Juraj Páterek ^b , Sebastien Saitzek ^c , Akvilė Zabiliūtė-
5	Karaliūnė ^d , Pranciškus Vitta ^d , David Enseling ^e , Thomas Jüstel ^e , Arturas Katelnikovas ^{a,*}
6 7	^a Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT–03225 Vilnius, Lithuania
8 9	^b Department of Optical Materials, Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, 162 00 Praha 6, The Czech Republic
10	^c Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-62300
11	Lens, France ^d Faculty of Physics, Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio al 3, LT-10257 Vilnius,
13	Lithuania
14	^e Department of Chemical Engineering, Münster University of Applied Sciences, Stegerwaldstr. 39, D-48565 Steinfurt,
15	Germany
16	* Corresponding author: Email: <u>arturas.katelnikovas@chf.vu.lt</u>
17	

- 18
- 19

20

Figure S2. XRD patterns of $K_2Bi(PO_4)(MoO_4)$: Sm³⁺ as a function of Sm³⁺ concentration.

Figure S3. Rietveld refinement of K₂Sm(PO₄)(MoO₄) powder XRD pattern.

Figure S4. FTIR spectra of $K_2Bi(PO_4)(MoO_4)$ doped with (a) 0%, (b) 25%, (c) 50%, (d) 75% and (e) 100% Sm³⁺.

Figure S5. PL decay curves of $K_2Bi(PO_4)(MoO_4)$:5%Sm³⁺ as a function of temperature.

- 1
- 2 Figure S6. A drawing of the designed pcLED for the plant growth. (a) The phosphor-silicone
- 3 converter (grey) is placed into a transparent poly(methyl methacrylate) holder (cyan); (b) the holder
- 4 containing the converter is used as a lid, to cover a near-UV LED (blue) mounted in a white
- 5 polyvinyl chloride foam reflector.

7

- 8 Table S1. Unit cell parameters of K₂Bi(PO₄)(MoO₄):Sm³⁺ derived from the Rietveld refinement of
- 9 the XRD patterns.

Sm ³⁺ (%)	a (Å)	b (Å)	c (Å)	V (Å ³)
5	12.468(5)	7.022(3)	19.691(8)	1724
10	12.459(8)	7.020(3)	19.698(7)	1723
25	12.441(3)	7.017(4)	19.704(5)	1720
50	12.401(8)	7.010(8)	19.712(9)	1714
75	12.364(5)	7.005(2)	19.719(9)	1708
100	12.330(7)	7.000(4)	19.726(7)	1703

10

11

12 **Table S2.** Colour coordinates (CIE 1931 and CIE 1976 colour space) and lumen equivalents (LE) 13 of synthesized phosphors as a function of Sm^{3+} concentration.

14								
1.	Sm ³⁺ (%)	$\lambda_{\rm ex} = 404 \ \rm nm$						
15		CIE	1931	CIE	LE			
10		Х	У	u'	v'	(lm/W _{opt})		
16	0.5	0.61069	0.38870	0.37913	0.54296	273		
10	1	0.61048	0.38891	0.37883	0.54301	274		
17	2.5	0.61086	0.38854	0.37937	0.54293	273		
- /	5	0.61098	0.38842	0.37955	0.54290	273		
18	10	0.61117	0.38823	0.37982	0.54286	272		
	25	0.61146	0.38794	0.38024	0.54280	272		
19	50	0.61195	0.38744	0.38096	0.54268	268		
	75	0.61170	0.38763	0.38064	0.54272	258		
20	100	0.61381	0.38548	0.38374	0.54224	286		

21

S4

- **Table S3.** Effective PL lifetime values of K₂Bi(PO₄)(MoO₄):Sm³⁺ phosphors as a function of Sm³⁺ 2 concentration, ($\lambda_{ex} = 404 \text{ nm}$, $\lambda_{em} = 598 \text{ nm}$).

Sm ³⁺ (%)	$\tau_{\rm eff}$ (ms)
0.5	1.62
1	1.59
2.5	1.33
5	1.14
10	0.87
25	0.43

5 Table S4. Extracted parameters of the PL decay curves fit by IH function.

Sm ³⁺ (%)	s	I ₀	$ au_{rad}$ (ms)	bckg	q	Err	Notes
	6	10303	1.83	9.95	0.003	104	
0.05	8	10402	1.81		0.007	103	Equally good fits for all s.
	10	10551	1.80		0.013	103	
	6	10200	1.83		0.006	170	
0.5	8	10950	1.81	2.00	0.022	178	Slightly better fit for dq, s=8.
	10	11300	1.80		0.041	168	
	6	10000	1.83		0.008	184	
1	8	10648	1.81	4.00	0.024	179	Slightly better fit for dq, s=8.
	10	11275	1.80		0.049	177	
	6	10410	1.83	2.50	0.017	112	Slightly better fit for dd, s=6 and dq, s=8.
2.5	2.5 8	12000	1.81		0.055	99	
	10	13643	1.80		0.105	221	
	6	10730	1.83		0.026	270	
5	8	12200	1.81	1.49	0.080	275	Slightly better fit for dd, s=6.
	10	13000	1.80		0.156	359	
	6	Х	Х	Х	X	x	Slightly better fit for da a=9. Unable to fit
10	8	12445	1.81	0.78	0.131	246	by dd, gg, g=6.10
	10	х	Х	Х	X	x	by uu, qq, s=0,10.
	6	X	Х		X	x	Slightly better fit for $da = 8$ and $aa = 10$
25	8	14000	1.81	0.42	0.271	466	Unable to fit by $dd_{s}=6$
	10	16000	1.80		0.502	594	Chable to fit by du, s=0.

4		$\lambda_{\rm ex} = 404 \ \rm nm$					
5	T (K)	CIE	1931	CIE	LE		
-		X	У	u'	v'	(lm/W _{opt})	
6	77	0.62565	0.37385	0.40139	0.53965	239	
Ŭ	100	0.62386	0.37563	0.39864	0.54006	242	
7	150	0.62007	0.37940	0.39290	0.54091	248	
	200	0.61709	0.38236	0.38846	0.54157	253	
8	250	0.61452	0.38491	0.38468	0.54214	256	
_	300	0.61235	0.38705	0.38153	0.54260	258	
9	350	0.61035	0.38903	0.37865	0.54303	260	
	400	0.60823	0.39111	0.37563	0.54347	262	
10	450	0.60602	0.39329	0.37251	0.54393	264	
	500	0.60415	0.39511	0.36990	0.54431	265	

Table S5. Colour coordinates (CIE 1931 and CIE 1976 colour space) and lumen equivalents (LE) 4 of K₂Bi(PO₄)(MoO₄):5%Sm³⁺ as a function of temperature.

E.

Table S6. Temperature dependent effective PL lifetime values ($\lambda_{ex} = 404 \text{ nm}$, $\lambda_{em} = 598 \text{ nm}$) of 15 K₂Bi(PO₄)(MoO₄):5%Sm³⁺ phosphor.

15	$K_2B1(PO_4)$	$(MoO_4):5\%Sr$	n ³⁺ phosphor
----	---------------	-----------------	--------------------------

I (K)	$ au_{\rm eff}$ (ms)
77	1.11
100	1.11
150	1.12
200	1.13
250	1.15
300	1.16
350	1.19
400	1.21
450	1.22
500	1.23