Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Measured and Simulated Thermoelectric Properties of $FeAs_{2-x}Se_x$ (x = 0.30 - 1.0): from Marcasite to Arsenopyrite Structure

Christopher J. Perez,¹ Kasey P. Devlin,¹ Callista M. Skaggs,² Xiaoyan Tan,^{2,3*} Corey E. Frank,³ Jackson R. Badger,¹ Chang-Jong Kang,⁴ Thomas J. Emge,³ Susan M. Kauzlarich,¹ Valentin Taufour,⁵ Gabriel Kotliar,⁴ Saul H. Lapidus,⁶ and Martha Greenblatt^{3*}

¹ Department of Chemistry, University of California, Davis, One Shields Ave., Davis, CA 95616, United States

²Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States

³Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.

⁴Departmentof of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States.

⁵Department of Physics, University of California, One Shields Avenue, Davis, California 95616, United States.

⁶Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, United States

*Corresponding authors's E-mail: xtan6@gmu.edu, greenbla@chem.rutgers.edu

Electronic Supplementary Information

List of Tables and Figures

Figure S1: Laboratory (Cu Ka, $\lambda = 1.5406$ Å) PXRD patterns before and after SPS.

Figure S2: Laboratory (Cu K*a*, $\lambda = 1.5406$ Å) PXRD patterns of FeAs_{2-x}Se_x (*x* = 0.30, 0.50, 0.60, 0.65, 0.75, 0.85, 1.0).

Table S1. Fractional Positional Coordinates and Anisotropic Thermal Parameters for $FeAs_{1.50}Se_{0.50}$

Table S2: Rietveld refinement results from Synchrotron PXRD of FeAsSe

Figure S3: Topological and X-ray elemental maps for polycrystalline FeAsSe. Composition calculated from EMPA analysis and the polycrystalline sample provides the composition $Fe_{1.023(6)}As_{0.97(3)}Se_{1.00(4)}$.

Figure S4: BSE images of $\text{FeAs}_{2-x}\text{Se}_x$ (x = 0.30, 0.75, 0.85) with Fe, As, and Se X-ray elemental maps.

Figure S5: Experimental data thermoelectric data for sintered pellets of $FeAs_{2-x}Se_x$ (x = 0.30, 0.75, 0.85)

Figure S6: Carrier concentration and carrier mobility of FeAsSe sintered pellet.

Figure S7: Room temperature carrier concentration and mobility of FeAs_{2-x}Se_x.

Figure S8: The calculated electronic thermal conductivity of FeAsSe. Two different

computational schemes, GGA(PBE) and mBJ, are provided for comparison.

Figure S1: Laboratory (Cu Ka, $\lambda = 1.5406$ Å) PXRD patterns before and after SPS.

Figure S2: Laboratory PXRD (Cu K*a*, $\lambda = 1.5406$ Å) patterns of FeAs_{2-x}Se_x (*x* = 0.30, 0.50, 0.60, 0.65, 0.75, 0.85, 1.0). * represents the peaks of small amount of Arsenopyrite phase.

Label	Wycoff Site	Х	Y	Z	Occupancy	U ₁₁ (Å ²)	$U_{22}(\text{\AA}^2)$	U ₃₃ (Å ²)	U ₂₃ (Ų)	U ₁₃ (Å ²)	$U_{12}(\text{\AA}^2)$
Fe1	2a	1/2	1/2	1/2	1.00	0.0039(5)	0.0025(5)	0.0091(5)	0	0	-0.0006(3)
As2	4g	0.31907(9)	0.13693(9)	1/2	0.75	0.0048(3)	0.0031(3)	0.0063(3)	0	0	-0.00047(14)
Se2	4g	0.31907(9)	0.13693(9)	1/2	0.25	0.0048(3)	0.0031(3)	0.0063(3)	0	0	-0.00047(14)

Table S1. Fractional Positional Coordinates and Anisotropic Thermal Parameters for $FeAs_{1.50}Se_{0.50}$

Table S2: Rietveld Refinement Results from Synchrotron PXRD of FeAsSe

	Comment					
Nominal formula	FeAsSe					
Wavelength (Å)	0.414532					
temperature (K)	293 K					
Space group	$P2_1/c$					
Lattice Parameters	a = 5.95922(6) (Å), $b = 5.87517(6)$ (Å),					
a h c V	c = 5.99802(7) (Å), V = 192.499 Å ³ ,					
<i>u</i> , <i>c</i> , <i>c</i> , <i>r</i>	$\beta = 113.5566(5)^{\circ}$					
(R _F , GOF)	5.2, 2.1					
Site	x, y, z					
Fe	0.2720(5), -0.0013(5), 0.2813(4)					
As	0.1509(3), 0.6312(3), 0.3666(3)					
Se	0.3471(3), 0.3623(3), 0.1713(2)					
Fe (Occupancy)	1					
As (Occupancy)	1					
Se (Occupancy)	0.970(5)					

Figure S3: Topological and X-ray elemental maps for polycrystalline FeAsSe.

Figure S4: BSE images of $\text{FeAs}_{2-x}\text{Se}_x$ (x = 0.30, 0.75, 0.85) with Fe, As, and Se X-ray elemental maps.

Figure S5: Thermally cycled experimental data showing (A) thermal diffusivity, (B) Thermal conductivity (C), Seebeck, and (D) resistivity for sintered pellets of $FeAs_{2-x}Se_x$ (x = 0.30, 0.75, 0.85).

Figure S6: Carrier concentration and carrier mobility of FeAsSe measured on a sintered pellet.

Figure S7: Room temperature carrier concentration and mobility of $\text{FeAs}_{2-x}\text{Se}_x$ (x = 0.75, 0.85).

Figure S8: The calculated electronic thermal conductivity of FeAsSe. Two different computational schemes, GGA(PBE) and mBJ, are provided for comparison.