ARTICLE

Electronic Supplementary Information

Boosted carrier mobility and enhanced thermoelectric properties of polycrystalline $Na_{0.03}Sn_{0.97}Se$ by liquid-phase hot deformation

Hao Sun, Chang Tan, Xiaojian Tan^{*}, Hongxiang Wang, Yinong Yin, Yuexin Song, Guo-Qiang Liu, Jacques G. Noudem, Quanguo Jiang, Jianfeng Zhang, Huajie Huang^{*}, and Jun Jiang^{*}

E-mail: tanxiaojian@nimte.ac.cn, huanghuajie@hhu.edu.cn, jjun@nimte.ac.cn.

Fig. S1. Pictures of graphite dies after liquid-phase hot deformation for (a) $Na_{0.03}Sn_{0.97}Se-5\%Te$; (b) $Na_{0.03}Sn_{0.97}Se-15\%Te$.

Fig. S2. Pictures of graphite dies after liquid-phase hot deformation for (a) $Na_{0.03}Sn_{0.97}Se-5\%Te$; (b) $Na_{0.03}Sn_{0.97}Se-15\%Te$.

Fig. S3. The $Na_{0.03}Sn_{0.97}Se-5\%$ Te sample of (a) EDS spectrum taken from the red scanning area; (b) the elemental mapping of Sn, Se, Na and Te in the selected area.

Fig. S4. $Na_{0.03}Sn_{0.97}Se-x\%Te$ samples of (a) Lorenz numbers;¹ (b) electronic thermal conductivity as a function of temperature.

Fig. S5. HRTEM images of strain-field images from different areas in the $Na_{0.03}Sn_{0.97}Se-5\%$ Te sample.

ARTICLE

Fig. S6. Microstructure of the Na_{0.03}Sn_{0.97}Se-5%Te sample: (a) Lowmagnification TEM image where Se-rich and Sn-poor precipitates in the red boxes; (b) HRTEM image from (a) region with its electron diffraction pattern; (c) HAADF-STEM image taken from the entire area of (b); (d) the corresponding EDS results for the areas with the composition of each given in atomic percentage; (e) EDS elemental maps. The interface regions were selenium precipitates and SnSe₂ second phase.^{2,3,4}

Table S1.	The relative	elemental	content	shown	in Fig	S6d
Table JT.		ciciliciitai	content	3110 0011	11115	J0u.

				0	
	Atomic	Atomic	Mass	Mass	Fit error
	(%)	error (%)	(%)	error (%)	(%)
Se	74.93	8.59	66.23	5.54	1.37
Sn	25.07	3.73	33.77	4.27	1.74
Те	0	0.33	0	0.46	0

References

1. H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, *APL Mater.*, 2015, **3**, 41506.

2. H. Wang, Y. Gao and G. Liu, RSC Adv., 2017, 7, 898-815.

3. Y. Wu, W. Li, A. Faghaninia, Z. Chen, J. Li, X. Zhang, B. Gao, S. Lin,

B. Zhou, A. Jain and Y. Pei, *Mater. Today Phys.*, 2017, **3**, 127-136.

4. L. Cao, J. Pan, H. Zhang, Y. Zhang, Y. Wu, Y. Lv, X. Yan, J. Zhou, Y. Chen, S. Yao, Y. Pei, M. Lu and Y. Chen, *J. Phys. Chem. C*, 2019, **123**, 27666-27671.