Electronic Supplementary Information for

Electron Transport in a Sequentially Doped Naphthalene Diimide Polymer Khaled Al Kurdi,¹ Shawn A. Gregory,² Samik Julkhi,¹ Maxwell Conte, ¹ Stephen Barlow, ¹ Shannon K. Yee, ³ Seth R. Marder^{1,2*}

¹School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA ²School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA ³George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA

* Corresponding author E-mail: seth.marder@chemistry.gatech.edu

Contents:

I.	Synthesis and Characterization of PNBS	pS2
II.	Additional UV-visNIR Data	pS3
III.	Additional XRD Data	pS5
IV.	AFM Data	pS5

I. Synthesis and Characterization of PNBS

Figure S1. Synthesis of PNBS.

Table S1. Comparison of molecular weight characteristics of PNBS synthesized in this work and reported in the literature.

This work ^a	Literature
M_n = 42.8 kDa	$M_n = 39.7 \text{ kDa}$
M_w = 86.1 kDa	$M_w = 147.6 \text{ kDa}$
PDI=2.10	PDI = 3.72.

^a Molecular weight of the synthesized polymer was analyzed via Gel Permeation Chromatography (GPC) using chloroform as an eluent. GPC sample was prepared by preparing 5 g L⁻¹ solution of the polymer in 0.25% triethyl amine in chloroform (HPLC grade) and then filtered through a 20 μ m PTFE filter before running the analysis.

Figure S2. Characterization of PNBS by (a) thermogravimetric analysis and (b) differential scanning calorimetry (second heating/cooling cycle), acquired using Mettler Toledo instruments at a heating/cooling rate of $10 \,^{\circ}\text{C}$ / min.

II. Additional UV-vis.-NIR Data

To compare the absorption of PNBS upon doping with N-DMBI-H to (N-DMBI)₂ samples prepared in a glovebox in Schlenk cuvettes were doped with different amounts of N-DMBI-H. The samples were then measured without heating. The samples were then heated for various times and measured.

Figure S3. UV-vis.-NIR spectra showing reactivity of PNBS with N-DMBI-H in chlorobenzene. The samples were prepared in a nitrogen filled glovebox in schlenk cuvettes to avoid exposure to oxygen and moisture. (a) doping of PNBS with different concentrations of DMBI-H. (b) PNBS pristine solution absorption evolution upon doping with 25% DMBIH with and without heating of the sample. (c) Doped PNBS with DMBIH solutions in chlorobenzene were heated at 100 °C for 10 minutes. (d) PNBS pristine solution absorption evolution upon doping with 50% DMBIH with and without heating of the sample.

Figure S4. UV-Vis-NIR spectra of PNBS films sequentially doped with (RuCp*mes)₂.

Figure S5. UV-Vis-NIR spectra of a PNBS film sequentially doped with (N-DMBI)₂ (5 mM) showing the effect of exposure to air for various times.

III. Additional XRD Data

Figure S6. GIXRD of PNBS films sequentially doped with (RuCp*mes)₂.

IV. AFM Data

Figure S7. AFM images, using a Bruker AFM instrument in tapping mode, where the scan frequency was fixed to 0.5 Hz, measured for the pristine, lightly doped and highest conductivity doped (N-DMBI)₂ doped PNBS films. (a) Pristine PNBS, (b) 2.5 mM doped PNBS, (c) 7.5 mM doped PNBS.