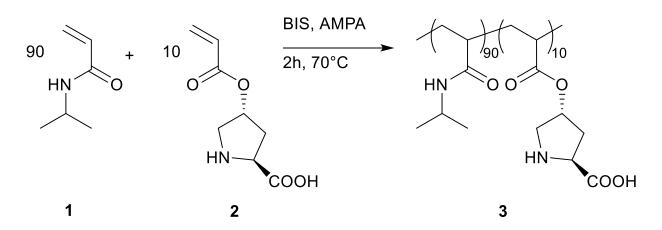
Supporting Information

Microgel Organocatalysts: Modulation of Reaction Rates at Liquid-Liquid Interfaces

Denise Kleinschmidt ^{a,b,c}, Katja Nothdurft ^d, Mikhail V. Anakhov ^e, Anna Astrid Meyer ^a, Matthias Mork ^a, Rustam A. Gumerov ^{b,e}, Igor I. Potemkin ^{b,e,f,*}, Walter Richtering ^d and Andrij Pich ^{a,b,c,*}


b. DWI – Leibniz Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstraße 50, 52062 Aachen, Germany.

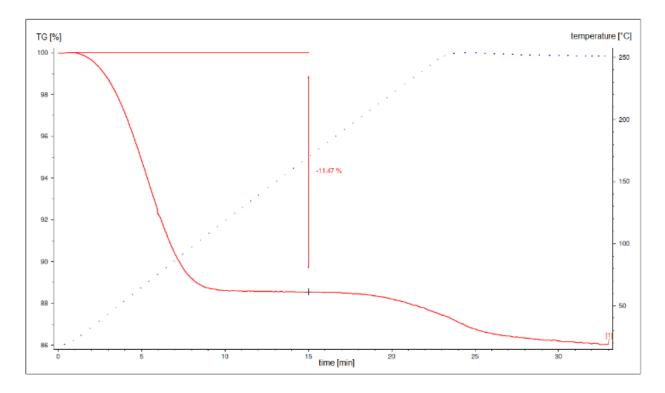
^c Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherland.

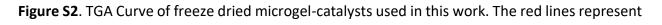
- e. Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow119991, Russian Federation.
- ^{f.} National Research South Ural State University, Chelyabinsk, 454080, Russian Federation.

Synthesis of Microgel-Catalysts

Reaction Scheme

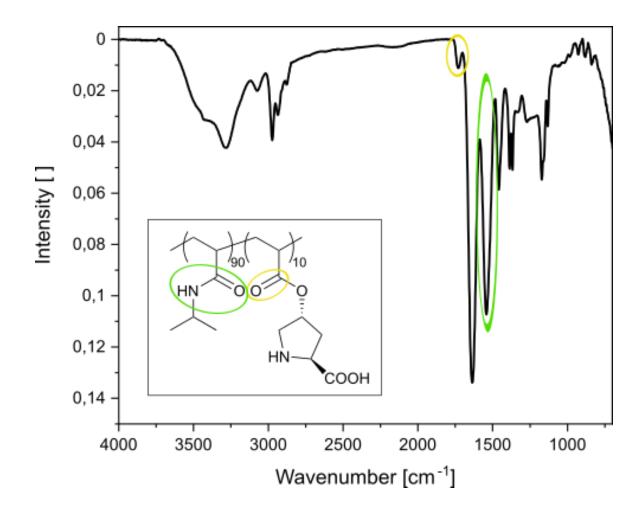
Figure S1. Reaction scheme of free radical precipitation polymerisation in water for synthesis of the microgel-catalysts. The main monomer *N*-isopropylacrylamide (NIPAM, **1**) is polymerised in presence of a polymerisable form of the L-proline organocatalyst (**2**). Synthesis of the latter can be found in literature.^{1,2} As crosslinker for the co-polymer microgel (**3**), the crosslinker *N*,*N*'- methylenebisacrylamide (BIS) and the initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AMPA) were used.

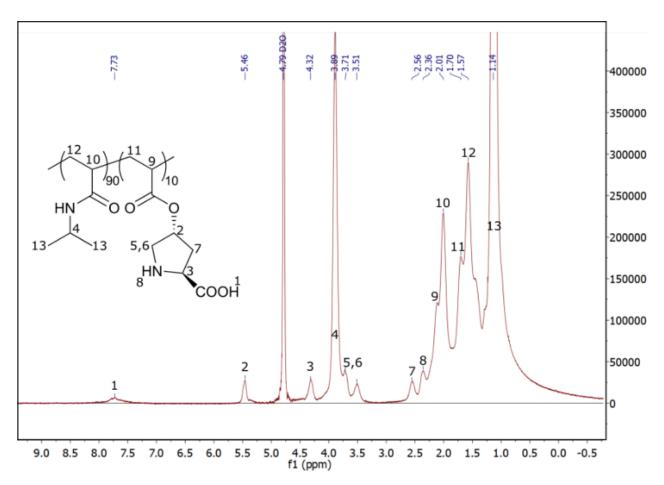

1


^{a.} Research Area Functional and Interactive Polymers, RWTH Aachen University, Forckenbeckstraße 50, 52062 Aachen, Germany.

^{d.} Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.

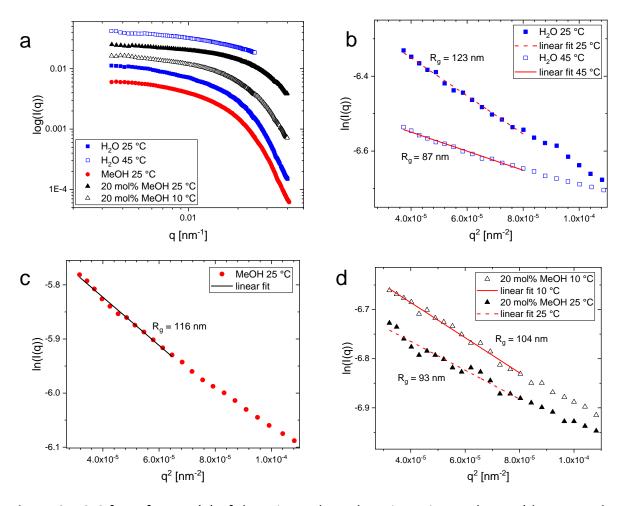

^{*} corresponding authors: pich@dwi.rwth-aachen.de, igor@polly.phys.msu.ru


Characterisation Methods Thermogravimetric Analysis (TGA)



the mass loss of sample. The blue dotted curve depicts the adapted temperature program.

Figure S3. ATR-FTIR spectrum of microgel-catalysts. For calculation of the L-proline content, the intensity ratios of the carbonyl stretching band of the modified L-proline catalysts at 1733 cm⁻¹ ($v(C=O)_{L-proline}$) (yellow) was referenced to the amide II band of NIPAM at 1541 cm⁻¹ ($v(amide II)_{PNIPAM}$) (green). The procedure is in accordance with the literature.^{2,3}



Nuclear Magnetic Resonance Spectroscopy (NMR-spectroscopy)

Figure S4. ¹H-NMR spectrum of the microgel-catalysts recorded in D₂O. Due to overlapping of signals, these data were used for qualitative analysis only.

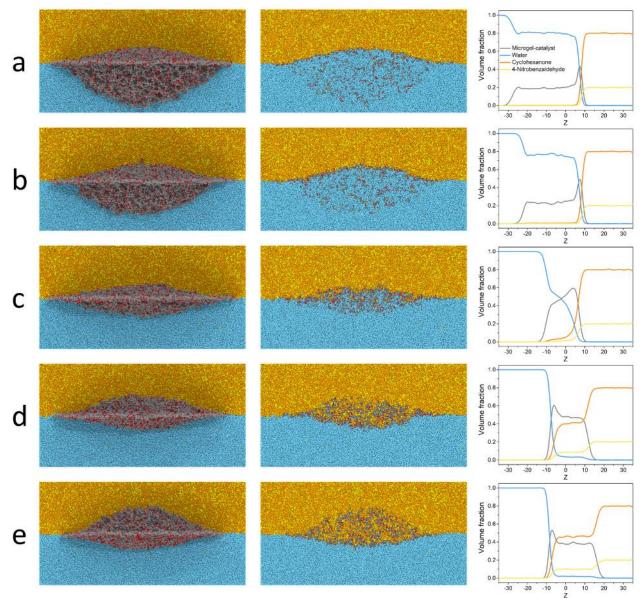
Static Light Scattering (SLS)

SLS measurements were conducted at 25 °C in water, methanol and 20 mol% methanol. In case of water the partly collapsed state at 45 °C and in case of the mixture the partly swollen state at 10 °C were measured additionally. As aggregates were found, especially for the mixture, the 10 °C measurement in the mixture is always performed directly before the 25 °C measurement. **Figure S5a** shows the scattering intensity in dependence of the scattering vector *q*. The microgelcatalysts are too small to obtain any minima in the q-regime of the SLS. Thus, the scattering curves are analysed with Guinier. The Guinier plots and linear fits of the microgel-catalysts in water (25, 45 °C), methanol (25 °C) and the mixture (10, 25 °C) are shown in **Figure S5b-d**. **Table S1** displays an overview of R_h , R_g and their ratio ρ in water, methanol and 20 mol% methanol at different temperatures.

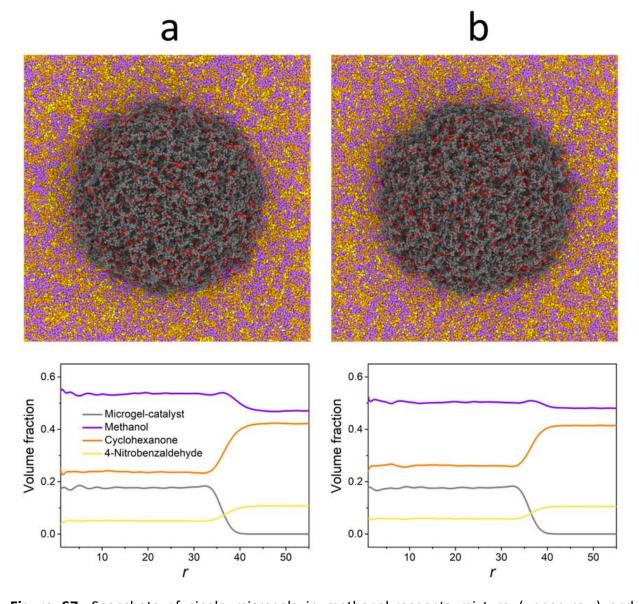
Figure S5. SLS form factors (a) of the microgel-catalysts in various solvents (the curves have been vertically shifted for better visibility) and the corresponding Guinier plots in water (b), methanol (c) and 20 mol% methanol (d).

Table S1. Comparison of the hydrodynamic radius, radius of gyration and their ratio of the microgel-catalysts in different swelling states.

Solvent	<i>T</i> [°C]	<i>R_h</i> [nm]	<i>R_g</i> [nm]	$\rho = R_g/R_h$
Water	25	167 ± 2	123 ± 2	0,74 ± 0.012
	45	110 ± 1	87 ± 2	0,79 ± 0.02
20 mol% MeOH	10	141 ± 1	104 ± 2	0,73 ± 0.012
	25	116 ± 2	93 ± 3	0,81 ± 0.03
MeOH	25	175 ± 7	116 ± 2	0,66 ± 0.03


In general, R_g exhibits comparable trends to R_h concerning the swelling state of the microgel-catalysts: The largest sizes are found in pure water and methanol at room temperature. At 45 °C in water and 25 °C in the 20 mol% mixture the smallest values are found for R_g . Both, R_g and R_h at high temperatures in water are smaller than in the mixture at room temperature. An intermediate value for R_g and R_h is found in the partly swollen state at 10 °C in the mixture. With respect to the ρ -ratio, it is known that a homogeneous sphere exhibits a value of 0.78. Studies by Senff et al.⁴ documented ratios between 0.55 – 0.6 for PNIPAM microgels in the swollen state in water. In comparison, higher ratios close to the one of hard spheres are found in case of the microgel-catalysts. The ρ -ratios lie between 0.66 and 0.81. The smallest ratios are determined for the swollen microgel-catalysts in methanol and water, as well as for the partly swollen state at 10 °C in the 20 mol% methanol mixture. The ρ -ratios close to 0.78 indicate a less fuzzy, more homogeneous structure of the microgel-catalysts compared to pure PNIPAM microgels.

Dissipative Particle Dynamics Simulations (DPD)


Table S2. DPD interaction parameters (in units of k_BT/r_c) at T = 25 °C used in the simulations. The numbers in brackets in the non-diagonal cells are the corresponding values of Flory-Huggins parameter.

$a_{ij}(\chi_{ij})$	Р	L	Ν	С	W	М
Р	25	26.63ª (0.50)	30.9 ^a (1.80)	27.16 ^a (0.66)	25.6 ^b (0.18)	25 ^c (0.00)
L	26.63ª (0.50)	25	28.37ª (1.03)	26.7° (0.52)	25 ^c (0.00)	28,52ª (1.07)
Ν	30.9ª (1.80)	28.37ª (1.03)	25	29.72ª (1.44)	57.73ª (10.01)	37.95ª (3.96)
С	27.16ª (0.66)	26.7ª (0.52)	29.72ª (1.44)	25	56.35ª (9.59)	32.49ª (2.29)
W	25.6 ^b (0.18)	25° (0.00)	57.73ª (10.01)	56.35ª (9.59)	25	d_
Μ	25 ^c (0.00)	28,52ª (1.07)	37.95ª (3.96)	32.49ª (2.29)	d_	25

^a Calculated from Hansen solubility parameter^{5 b} Calculated using the approach of Yong *et al.*⁶ ^c Fixed values ^d The interactions that weren't considered both in experiments and simulations

Figure S6. Side views of the adsorbed microgels (left column), cross-section of the microgels through the centre of mass and of PNIPAM (grey), L-proline (red), *4*-nitrobenzaldehyde (yellow), cyclohexanone (orange) and water (blue) beads (middle column), concentration profiles along the normal to the interface, z-axis (right column). The lines of different colours correspond to the concentrations of respective types of beads. Different rows correspond to different temperatures: T = 25 °C (a), T = 30 °C (b), T = 35 °C (c), T = 40 °C (d) and T = 45 °C (e).

Figure S7. Snapshots of single microgels in methanol-reagents mixture (upper row) and corresponding radial concentration profiles from microgel's centre of mass (lower row) at T = 25 °C (a) and T = 45 °C (b). The lines of different colors correspond to the concentrations of respective types of beads: PNIPAM + L-proline (grey), 4-nitrobenzaldehyde (yellow), cyclohexanone (orange) and methanol (purple).

References

- 1 T. E. Kristensen, K. Vestli, K. A. Fredriksen, F. K. Hansen and T. Hansen, *Org. Lett.*, 2009, **11**, 2968–2971.
- D. Kleinschmidt, M. Sofia Fernandes, M. Mork, A. Astrid Meyer, J. Krischel, M. V. Anakhov,
 R. A. Gumerov, I. I. Potemkin, M. Rueping and A. Pich, *J. Colloid Interface Sci.*, 2019, 559, 76–87.
- 3 M. E. Jacox, J. Phys. Chem. Ref. Data, , DOI:10.1063/1.1497629.
- 4 H. Senff and W. Richtering, *Colloid Polym. Sci.*, 2000, **278**, 830–840.
- 5 C. M. Hansen, *Hansen Solubility Parameters: A User's Handbook*, CRC Press, Boca Raton, 2nd edn., 2007.
- 6 X. Yong, O. Kuksenok, K. Matyjaszewski and A. C. Balazs, *Nano Lett.*, 2013, **13**, 6269–6274.