Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary information for

Improved Catalytic Effect and Metal Nanoparticle Stability using Graphene Oxide

Surface Coating and Reduced Graphene Oxide for Hydrogen Generation from

Ammonia-Borane Dehydrogenation

Samikannu Prabu and Kung-Yuh Chiang

Graduate Institute of Environmental Engineering, National Central University, Tao-Yuan,

32001, Taiwan

SFig. 1 Experimental setup for aqueous AB solution hydrolysis.

SFig. 2 SEM and TEM images of graphene oxide (GO).

SFig. 2 shows the FESEM image of as-synthesized GO and note that distinctly separated flakes with small corners are developed. The GO Nano-sheet shows a closely crowded lamellar structure and a smooth surface, with shiny multilayered microstructure. The GO samples contain several layers of aggregated and square-shaped crumpled sheets closely associated with each other to form a continuous conducting network. Through the exfoliation of graphite into GO, the edges of the GO sheets become creased, folded, and closely restacked, and the GO surface exhibits a soft carpet-like morphology, because of the presence of residual H₂O molecules and hydroxyl or carboxyl groups. In contrast to GO, the GO sheet exhibits transparent swelled silk-like waves or a flaky, scale-like, layered structure.

SFig. 3 FESEM, TEM images of $Co_{0.6}Ni_{0.4}/GO$ and rGO (a, b), $Co_{0.4}Ni_{0.6}/GO$ and rGO (d, e), and (c) and (f) are the average particle size distribution of the $Co_{0.6}Ni_{0.4}/GO$ and rGO and $Co_{0.4}Ni_{0.6}/GO$ and rGO, respectively.

SFig. 4 EDX spectra of the (a) CoNi/GO and rGO, (b) CoPt/GO and rGO, and (c) NiPt/GO and rGO NPs.

SFig. 5 FESEM and EDX mapping images of the NiCo/GO and rGO NPs.

SFig. 7 TEM images and the corresponding SAED patterns of (a) Pt/GO and (c) Co/GO, particle size distribution of the (b) Pt/GO and (d) Co/GO, respectively.

SFig. 8 TEM images of (a) NiPt/Al₂O₃, NiPt/SiO₂ and (c) CoNi/Al₂O₃.

SFig. 9 shows the TOF values for aqueous AB solution hydrolysis at different temperatures (20 $^{\circ}$ C to 60 $^{\circ}$ C) (metal/AB = 0.04).

SFig. 10 (a,c) SEM and TEM images of $Ni_{0.8}Pt_{0.2}/GO$ and rGO (b,d), $Co_{0.8}Pt_{0.2}/GO$ and rGO nano catalyst after the stability test.

SFig. 11 X-ray diffraction patterns of $Ni_{0.8}Pt_{0.2}/GO$ and rGO NPs after the durability test.

SFig. 12 Hydrogen generation from AB hydrolysis (5 mL) in the presence of 1 M (a) NaOH, (b) KOH, (c) NaH₂PO₄, (d) NH₄OH, (e) GO, and (f) Ca(OH)₂ at 25 °C.

No hydrogen generation is observed for NaOH, KOH, NaH₂PO₄, NH₄OH, GO, and Ca(OH)₂ toward AB hydrolysis in the absence of $Co_{0.8}Pt_{0.2}$ NPs, suggesting that these additives have no catalytic activity for AB hydrolysis.

SFig. 13 FT-IR spectra of GO and metal-doped GO and rGO (M-Ni, Co, Pt).

SFig. 13 demonstrates the FT-IR spectra of GO and M-doped GO and rGO (M-Ni, Co, Pt). It can be seen that many oxygen functional groups exist on the GO Nano-sheet. The FT-IR absorption peaks of GO characterizes the presence of different existing oxygen functional groups such as O-H stretch from the carboxylic group at 3464 cm⁻¹. The absorption peak at 1709 cm⁻¹ shows the existence of C=C, and the peaks at 1633 cm⁻¹ attributed to the C=O stretching of carbonyl group, the peaks at 1382 cm⁻¹ appearances the existence of –COO⁻ group and the peak at 1033 cm⁻¹ characterizes the occurrence of -C-OH, respectively. Subsequently reduction of the graphene oxide (GO), some oxygen existing functional groups were disregarded, only a weak O–H carboxylic functional groups were existing in the metal-doped GO and rGO.

STable 1. The catalysts composition determined by inductively coupled plasma atomic emission spectroscopic (ICP-AES).

S.No	Catalysts	Co (%)	Ni (%)	Pt (%)
1.	Co/GO	1.35	-	-
2.	Ni/GO	2.04	-	-
3.	Pt/GO	1.87	-	-
4.	Co _{0.4} Ni _{0.6} /GO	1.46	5.24	-
5.	Co _{0.6} Ni _{0.4} /GO	2.84	3.02	-
6.	Co _{0.8} Pt _{0.2} /GO and rGO	4.21	-	2.10
7.	Ni _{0.8} Pt _{0.2} /GO and rGO	-	4.34	2.12

STable 2 Catalytic activity in terms of TOF of th	e graphene oxide supported metal-based catalysts
for AB hydrolytic dehydrogenation.	

S.No	Catalysts	H ₂ (mole)	t (min)	TOF (min ⁻¹)
1.	Co _{0.6} Ni _{0.4} /GO	6	2.4	100.02
2.	Co _{0.4} Ni _{0.6} /GO	6	1.6	107.14
3.	$Co_{0.9}Pt_{0.1}/GO$	6	1.8	83.34
4.	Ni _{0.8} Pt _{0.2} /GO and rGO	6	0.50	214.28
5.	$Co_{0.8}Pt_{0.2}/GO$ and rGO	6	0.60	230.76
6.	Ni/GO	5.9	4.6	53.57
7.	Co/GO	6	2.7	31.25
8.	Pt/GO	6	3.1	45.45

STable 3 Catalytic activity in terms of TOF of the reported metal-based catalysts for AB hydrolytic dehydrogenation.

S. No	Catalysts	nmetal/	t (min)	<i>n</i> H ₂ / <i>n</i> AB	TOF	Activation	References
		nAB			(min) ⁻¹	Energy (Ea)	
1.	Ni _{0.9} Mo _{0.1} /Graphene	0.05	0.9	3	66.7	-	1
2.	Ni _{0.9} Cr _{0.1} /Graphene	0.05	3.5	3	17.1	-	1
3.	Ni _{0.7} Co _{1.3} P/rGO	0.026	10.4	3	109.4	-	2
4.	Pd-rGO	0.04	12.5	3	6.25	51	3
5.	Pd/C	0.02	80	3	1.9	-	4
6.	Ag@Co/Graphene	0.05	5	3	10.24	20.03	5
7.	AuCo@MIL-101	0.017	13	3	25.7	34	6
8.	Ag@CoFe/Graphene	0.05	10	3	8.27	32.79	7
9.	Pd@Co/Graphene	0.02	3.5	3	40.9	30.3	8
10.	Ni _{0.8} Pt _{0.2} /GO and rGO	0.04	0.50	6	214.28	23.94	Current work
11.	Co _{0.8} Pt _{0.2} /GO and rGO	0.04	0.60	6	230.76	23.60	Current work
12.	Co _{0.4} Ni _{0.6} /GO	0.04	1.6	6	107.14	-	Current work
13.	Pd/γ-Al ₂ O ₃	0.018	120	3	1.39	-	9
14.	Pd/graphene aerogel	0.056	5.5	3	9.70	30.82	10

References

- 1 Q. Yao, Z. H. Lu, W. Huang, X. Chen and J. Zhu, J. Mater. Chem. A, 2016, 4, 8579-8583.
- 2 C. C. Hou, Q. Li, C. J. Wang, C. Y. Peng, Q. Q. Chen, H. F. Ye and Y. Chen, *Energy Environ. Sci.*, 2017, **10**, 1770-1776.
- 3 P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao and Z. Zeng, Nanoscale, 2012, 4, 5597-5601.
- 4 P. V. Ramachandran and P. D. Gagare, Inorg. Chem., 2007, 46, 7810-7817.
- 5 L. Yang, W. Luo and G. Cheng, ACS Appl. Mater. Interfaces, 2013, 5, 8231-8240.
- 6 O. Metin and S. Ozkar, Int. J. Hydrogen Energ., 2011, 36, 1424-1432.
- 7 L. Yang, J. Su, W. Luo and G. Cheng, Int. J. Hydrogen Energ., 2014, 39, 3360-3370.
- 8 J. Wang, Y. L. Qin, X. Liu and X. B. Zhang, J. Mater. Chem., 2012, 22, 12468-12470.
- 9 Q. Xu and M. Chandra, J. Alloys Comp., 2007, 446, 729-732.
- 10 X. K. Tian, C. Yang, Z. X. Zhou, X. W. Liu, Y. Li, Int. J. Hydrogen Energ., 2016, 41, 15225-15235.