A compared experimental and theoretical study of the mechanism of graphene oxide mild reduction by ascorbic acid and N-acetyl cysteine for biomedical applications

Andrea Giacomo Marrani,^{a*} Alessandro Motta,^{a,b} Valentina Palmieri,^{c,d} Giordano Perini,^c Massimiliano Papi,^c Enrique A. Dalchiele,^e Ricardo Schrebler^f and Robertino Zanoni^a

^aDipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, I-00185, Rome (Italy)

^bINSTM UdR Roma, Piazzale Aldo Moro 5, I-00185, Rome (Italy)

^cDepartment of Neuroscience, Università Cattolica del Sacro Cuore, Rome (Italy)

^d Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome (Italy)

^eInstituto de Física & CINQUIFIMA, Facultad de Ingeniería, Julio Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

^fInstituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2950, 2340000 Valparaíso, Chile

*Corresponding author: Andrea G. Marrani andrea.marrani@uniroma1.it

ELECTRONIC SUPPLEMENTARY MATERIAL

Figure S1. CV of **GO** drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2^{nd} and 3^{rd} cycles are displayed with a dashed line.

Figure S3. CV of **NAC 24h** m-rGO drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2nd and 3rd cycles are displayed with a dashed line.

Figure S2. CV of **NAC 4h** m-rGO drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2nd and 3rd cycles are displayed with a dashed line.

Figure S4. CV of **NAC 72h** m-rGO drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2nd and 3rd cycles are displayed with a dashed line.

Figure S5. CV of $H_2A 4h$ m-rGO drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2nd and 3rd cycles are displayed with a dashed line.

Figure S7. CV of H_2A **48h** m-rGO drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2nd and 3rd cycles are displayed with a dashed line.

Figure S6. CV of H_2A 24h m-rGO drop casted onto GCE. Measurements were run in 1.0 M pH=7.2 PBS buffer solution at 20 mV s⁻¹ potential scan rate. 2nd and 3rd cycles are displayed with a dashed line.

Figure S8. Tauc plots calculated from the absorption spectra to estimate the bandgap values of GO, NAC 72h and H_2A 48 h, as indicated.

Figure S9. Raman spectra in the high wavenumber region of m-rGO samples: H₂A 4h, H₂A 24h, NAC 24h and NAC 72h. Experimental data (dots) have been fitted with symmetric and asymmetric Lorentzian model curves (continuous lines), associated to 2D (dark cyan) and D+G (magenta) peaks.

Figure S10. Sequential oxidation of NAC during successive reduction steps of epoxyl groups in GO.

Reaction free Gibbs energy (kcal/mol) values are also reported.

sample	U _{onset} (V)	U _{peak} (V)	Q (C)	E _{LUMO} (eV)
GO	-0.923	-1.311	0.152	-4.03
NAC 4h	-0.862	-0.975	0.121	-4.09
NAC 24h	-0.713	-0.866	0.064	-4.24
NAC 72h	-0.593	-0.836	0.045	-4.36
H ₂ A 4h	-0.722	-0.869	0.070	-4.23
H ₂ A 24h	-0.582	-0.817	0.063	-4.37
H ₂ A 48h	-0.552	-0.774	0.025	-4.40

Table S1. Electrochemical parameters associated to the reduction processes and resulting LUMO
 energy values for the samples addressed in this work.

Table S2. Experimental values of Raman shift (cm⁻¹) and FWHM (cm⁻¹) of high wavenumber peaks (2D and D+G) in Raman spectra of selected samples addressed in this work.

	Raman shift (cm ⁻¹)/ FWHM (cm ⁻¹)			
sample	2D	D+G		
H ₂ A 4h	2700/182	2952/166		
H ₂ A 24h	2700/180	2954/166		
NAC 24h	2697/172	2952/166		
NAC 72h	2699/172	2954/158		
erGO ^a	2704/137	2954/122		
\mathbf{GO}^{a}	2708/202	2942/164		

^{*a*} Data taken from ref¹

References

Marrani, A. G.; Coico, A. C.; Giacco, D.; Zanoni, R.; Scaramuzzo, F. A.; Schrebler, R.; Dini, D.; Bonomo, M.; Dalchiele, E. A. Integration of graphene onto silicon through electrochemical reduction of graphene oxide layers in non-aqueous medium. *Appl. Surf. Sci.* 2018, 445, 404–414.