Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information – 3 pages and 4 figures

Ferroelectric Surface Photovoltage Enhancement in Chromium-doped SrTiO₃ Nanocrystal Photocatalysts for Hydrogen Evolution

Samutr Assavachin, ^a Benjamin A. Nail, ^a Renato V. Goncalves, ^b Justin R. Mulcahy, ^a Sarah E. Lloyd, ^a and Frank E. Osterloh^a*

a Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States and

b São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, SP, Brazil

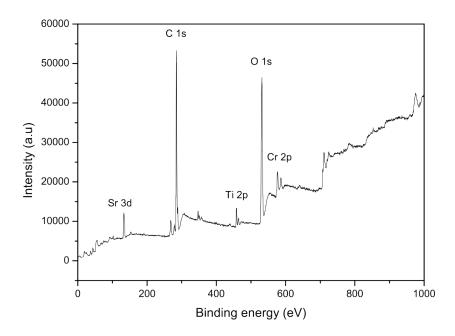


Figure S1. X-ray photoelectron survey spectrum.

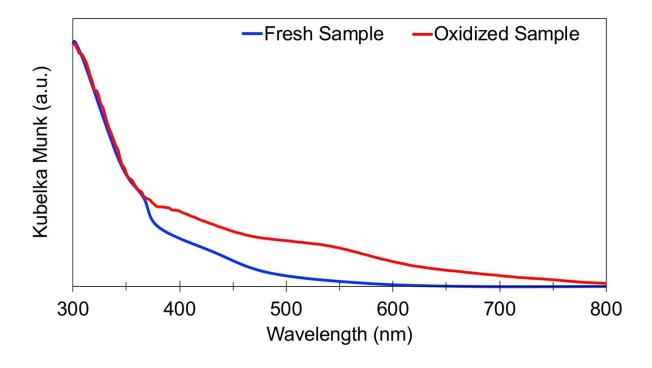
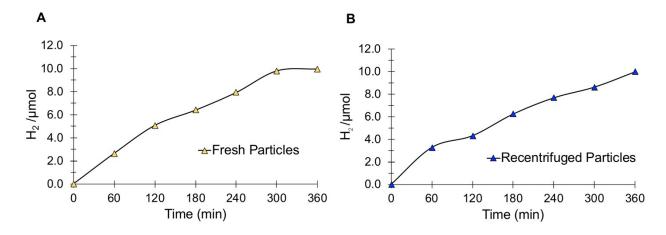
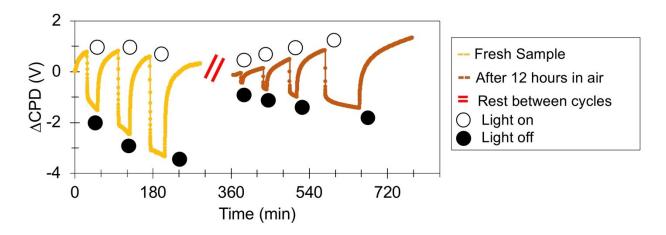




Figure S2. KM plot for a fresh and an oxidized SrTiO₃:Cr film (after storing in air for 3 months).

Figure S3. AQE Measurement on 0.5%wt Pt - SrTiO₃:Cr under 435 nm illumination in 20% aqueous methanol solution (irradiation area of 2.01 cm^2). A) Lamp intensity = 19.3 mW/cm^2 on freshly made sample with AQE = 0.66%. B) 20.91 mW/cm^2 lamp intensity on recentrifuged sample after 6 hours irradiation with AQE = 0.61% (7.6% decrease from original value).

Figure S4. Transient photovoltage of Au/SrTiO₃:Cr under 2.5 eV illumination before and after sample exposure to air (dark) for 12 h.