Cyclic Siloxanes conjugated with Fluorescent Aromatic Compounds as Fluoride Sensors

Nicha Prigyai,^a Supphachok Chanmungkalakul,^a Sutthiroj Thanyalax,^a Mongkol Sukwattanasinitt,^{b,c} and Vuthichai Ervithayasuporn*^a

^b Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand.

[°]Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand.

*Corresponding author: Vuthichai Ervithayasuporn (V.E.) E-mail address: <u>vuthichai.erv@mahidol.edu</u>

maldiniandg@hotmail.com

^a Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, Rama VI road, Ratchathewi, Bangkok 10400, Thailand.

Table of Contents

1.	Solid state of 9-bromoanthracene, 1-bromopyrene, D ₄ An and D ₄ PyS4
2.	¹ H MAS NMR spectra of D ₄ An and D ₄ PyS5
3.	MALDI-TOF spectra of D ₄ An and D ₄ PyS6
4.	Photograph of D_4An and D_4Py after added guest anions (200 equiv.) under UV lampS7
5.	Fluorescence spectra of D ₄ An and D ₄ Py after added guest anions (200 equiv.)S8
6.	Kinetic studies of D ₄ An and D ₄ Py after addition excess of fluoride, cyanide and
	phosphate anions
7.	Table of kinetic constants (k) of fluorescence responses of D ₄ An and D ₄ Py with fluoride,
	cyanide and phosphate anions (200 equiv.)
8.	Fluorescence titration spectra of D_4An and D_4Py with fluoride in various solvents
9.	FTIR spectra of D ₄ An and D ₄ Py before and after addition of fluoride (1equiv.)S12
10.	¹⁹ F NMR spectra for titration of D ₄ An after addition of TBAFS13
11.	¹⁹ F NMR spectra for titration of D ₄ Py after addition of TBAFS14
12.	ESI-MS spectrum of D ₄ An after addition of fluoride (1equiv.)S15
13.	ESI-MS spectrum of D ₄ Py after addition of fluoride (1equiv.)S16
14.	UV-Vis absorption spectra of D ₄ An and D ₄ Py in various solventsS17
15.	UV-Vis spectra of D ₄ An and D ₄ Py in THF before and after addition of various anionsS18

Electronic Supplementary Information (ESI) Table of Contents

16. Benesi-Hildebrand plot from UV-Vis titration of D ₄ An and D ₄ Py in THF with fluoride
ion
17. LOD and LOQ plot from UV-Vis titration of D ₄ An and D ₄ Py in THF with fluoride
ion
18. Benesi–Hildebrand plot from fluorescence titration of D ₄ An with fluoride ion in various
solvents
19. Benesi- Hildebrand plot from fluorescence titration of D ₄ Py with fluoride ion in various
solvents
20. LOD and LOQ plot from fluorescence titration of D_4An with fluoride ion in various
solvents
21. LOD and LOQ plot from fluorescence titration of D ₄ Py with fluoride ion in various
solvents
22. Table of associate constants (K_a), LOD and LOQ of D ₄ An and D ₄ Py with fluoride from
Uv-Vis absorption and fluorescence emission titration
23. Possible structures of D ₄ isomers
24. Table of computational optimized of possible D ₄ isomers and D ₄ after fluoride
addition

Figure S1. Solid state of 9-bromoanthracene and D_4An (a) and 1-bromopyrene and D_4Py (b) under visible light in top and under UV lamp in bottom.

Figure S2. ¹H MAS NMR spectra of D₄An and D₄Py.

Figure S3. MALDI-TOF spectra of (a) D_4An and (b) D_4Py .

m/z

D₄Py

b)

Figure S4. Photograph of a) D_4An (2 × 10⁻⁵ M) and b) D_4Py (1 x 10⁻⁵) M after added guest anions (200 equiv.) in various solvents under UV lamp

Figure S5. Fluorescence spectra of a) D_4An (2×10⁻⁵ M) at λ_{ex} = 378 nm and b) D_4Py (1 x 10⁻⁵ M) at λ_{ex} = 350 nm in various solvent before and after addition of anions (200 equiv.).

Figure S6. Kinetic studies of $D_4An (2 \times 10^{-5} \text{ M})$ (left) and $D_4Py (1 \times 10^{-5} \text{ M})$ (right) after addition of excess a) F^- , b) CN^- , and c) PO_4^{3-} .

Table S1. Kinetic constants (k) of fluorescence responses of D₄An and D₄Py with anion guests (200 equiv.)

Kinetic constant (<i>k</i>) ×10 ⁻³ s ⁻¹							
D4An				D4Py			
Solvent	F	CN⁻	PO4 ³⁻	F ⁻	CN [−]	PO4 ³⁻	
Toluene	3.2	3.1	2.5	0.7	6.3	4.8	
THF	0.8	3.4	4.2	1.3	4.9	6.2	
DMF	8.4	4.4	1.1	3.6	4.8	6.8	
DMSO	6.8	3.0	3.5	0.6	7.5	6.6	

Kinetic calculation

At the low concentrations, the kinetic constant was calculated from pseudo-first order equation as following below

$$In [I] = kt + In[I]_0$$

When I and I_0 were the fluorescence intensity before and after addition of fluoride, t is time (s). The kinetic constant (k) could be calculated through the slope of graph between In [I] against

Figure S7. Fluorescence titration spectra of a) D_4An (2×10⁻⁵ M) at λ_{ex} = 378 nm and b) D_4Py (1 x 10⁻⁵ M) at λ_{ex} = 350 nm in various solvents at different concentrations of fluoride

Figure S8. FTIR spectra of a) D₄An and b) D₄Py before and after addition of fluoride (1 equiv).

Figure S9. ¹⁹F NMR spectra for titration of D₄An in CDCl₃ after addition of TBAF

Figure S10. ¹⁹F NMR spectra for titration of D₄Py in CDCl₃ after addition of TBAF

Figure S11. ESI-MS spectrum of D₄An after addition of fluoride (1 equiv.)

Figure S12. ESI-MS spectrum of D₄Py after addition of fluoride (1 equiv.)

Figure S13. UV-Vis absorption spectra of a) $D_4An (4 \times 10^{-5} \text{ M})$ and b) $D_4Py (1 \times 10^{-5} \text{ M})$ in various solvents.

Figure S14. UV-Vis spectra of a) $D_4An (4 \times 10^{-5} \text{ M})$ and b) $D_4Py (2 \times 10^{-5} \text{ M})$ in THF before and after addition of various anions (200 equiv.)

The association constant (K_a) was calculated according to the Benesi–Hildebrand equation as following below (a) fluorescence experiment and (b) UV-Vis experiment

$$\frac{1}{I-I_0} = \frac{1}{K(I_{max} - I_0)[F^-]} + \frac{1}{(I_{max} - I_0)} \qquad (a)$$
$$\frac{1}{A-A_0} = \frac{1}{K(A_{max} - A_0)[F^-]} + \frac{1}{(A_{max} - A_0)} \qquad (b)$$

 I_0 is the fluorescence intensity of solution in the absence of fluoride, I is fluorescence record in the present of fluoride ion and I_{max} is the fluorescence in the addition of $[F^-]_{max}$. While A and A_0 are absorbance of solution with and without fluoride, respectively. A_{max} are the absorbance in the presence of $[F^-]_{max}$. The association constant (K_a) could be calculated from the slope of straight line plot between $1/(A - A_0)$ or $1/(I - I_0)$ against $1/[F^-]$.

Figure S15. Benesi– Hildebrand plot from UV-Vis titration of a) $D_4An (4 \times 10^{-5} \text{ M})$ at 510 nm and b) $D_4Py (2 \times 10^{-5} \text{ M})$ at 493 nm in THF with fluoride ion.

The limit of detection and limit of quantitative for fluoride were calculated from absorption and fluorescence titration which according to the equation

$$LOD = 3\sigma/S$$
$$LOQ = 10\sigma/S$$

Where, σ is the standard deviation of the response and *S* is the slope of calibration curve.

Figure S16. LOD and LOQ plot from UV-Vis titration of a) $D_4An (4 \times 10^{-5} \text{ M})$ at 510 nm and b) $D_4Py (2 \times 10^{-5} \text{ M})$ at 493 nm in THF with fluoride ion.

Figure S17. Benesi– Hildebrand plot from fluorescence titration of D_4An (2×10⁻⁵ M) with fluoride ion in various solvents.

Figure S18. Benesi– Hildebrand plot from fluorescence titration of D_4Py (1 x 10⁻⁵ M) with fluoride ion in various solvents.

Figure S19. LOD and LOQ plot from fluorescence titration of $D_4An (2 \times 10^{-5} \text{ M})$ with fluoride ion in various solvents.

Figure S20. LOD and LOQ plot from fluorescence titration of D_4Py (1 x 10⁻⁵ M) with fluoride ion in various solvents.

	D₄An					D₄Py						
Uv-Vis absorption		Fluorescence emission		Uv-Vis absorption		Fluorescence emission						
Solvent	<i>К</i> а (М ⁻¹)	LOD (µM)	LOQ (µM)	<i>К</i> а (М ⁻¹)	LOD (µM)	LOQ (µM)	<i>К</i> а (М ⁻¹)	LOD (µM)	LOQ (µM)	<i>К</i> а (М ⁻¹)	LOD (µM)	LOQ (µM)
Toluene	-	-	-	4.9×10 ⁴	0.2	0.9	-	-	-	6.3×10 ⁵	0.3	1.3
THF	394	36	120	11.8×10 ⁴	0.3	1.0	1.2×10 ³	16	56	3.4×10 ⁴	0.4	1.6
DMF	-	-	-	2.5×10 ⁴	0.8	2.6	-	-	-	4.5×10 ⁴	1.0	3.4
DMSO	-	-	-	3.1×10 ⁴	1.7	5.8	-	-	-	3.3×10 ⁴	1.0	3.2

Table S2. Associate constants (K_a), LOD and LOQ of D₄An and D₄Py with fluoride from Uv-Vis absorption and fluorescence emission titration.

all-*trans*

cis-trans-cis

all-cis

cis-cis-trans

Isomers	Electronic energy (Hatree)	Geometry
All-cis	-4080.587654	
All-trans	-4080.596471	
Cis-cis-trans	-4080.585036	

Cis-trans-cis	-4080.586615	
All- <i>cis</i> + F ⁻	-4180.410981	
All- <i>trans</i> + F⁻	-4180.401083	