Supplementary Information For

Suppressing Vanadium Crossover Using Sulfonated Aromatic Ion Exchange Membranes for High Performance Flow Batteries

Tongshuai Wang, Junyoung Han, Kihyun Kim, Andreas Munchinger, Yuechen Gao, Alain

Farchi, Yoong-Kee Choe, Klaus-Dieter Kreuer*, Chulsung Bae*, and Sangil Kim*

Supplementary Information Contents

Supplementary Figure 1-11 Supplementary Table 1-4 Reference

Figure S1. Synthesis of functionalized polymer electrolytes with different side chain structures. Compound **1**: $ICF_2CF_2OCF_2CF_2SO_3Na$. Related to the polymer Synthesis and characterization section in the main test.

Figure S2. ¹H NMR spectra (CDCl₃) of synthesized polymers: BP-TA (blue) and BP-Ar-I (red). BP-TA δ (ppm) = 7.57 (d, 4H), 7.36 (d, 4H), 2.8 (t, 2H), 2.43 (m, 2H), 1.52 (m, 2H), 1.37 (m, 2H), 1.24 (m, 2H); BP-Arl δ (ppm) = 7.57 (d, 4H), 7.49 (d, 2H), 7.39 (d, 4H), 6.60 (d, 2H), 3.82 (t, 2H), 2.47 (m, 2H), 1.71 (m, 2H), 1.47 (m, 2H), 1.31 (m, 2H). Related to the polymer Synthesis and characterization section in the main test.

Figure S3. ¹⁹F NMR spectra of synthesized polymers: Compound **1** (D₂O solvent, blue) and BP-Ar-I (DMSO-*d*₆, red). Compound **1**, δ (ppm) = -68.38 (t, 2F), -83.17 (t, 2F), -86.31 (t, 2F), -118.46 (t, 2F); BP-ArI, δ (ppm) = -64.57 (s, 3F, -CF₃), -82.25 (t, 2F), -87.08 (t, 2F), -111.82 (t, 2F), -117.92 (t, 2F). Related to the polymer Synthesis and characterization section in the main test.

Figure S4. Charge-discharge curves for BP-ArF4, BP-ArSA, BP-SA, and BPN1 at current density of 40 mA/cm².

Figure S5. Comparison of VRFB cycle stability of BP-ArF4 membrane with Nafion 212 and 117 at 100 mA/cm².

Figure S6. Chemical stability test results show increase of V⁴⁺ ions concentration with time of electrolyte (0.1 M V⁵⁺ in 4.0 M H₂SO₄) solutions containing IEMs at room temperature. We also compare our biphenyl-based sulfonated membranes with another hydrocarbon PEM, BPSH-60. Related to the VRFB performance section in the main test.

Figure S7. Optimized structures of $VO(SO_4)(H_2O)_4$. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Figure S8. Optimized structures of BP-ArF4 --- vanadium ion complexes. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

(a) comp1-BP-ArSA

(b) comp2-BP-ArSA

Figure S9. Optimized structures of BP-ArSA --- vanadium ion complexes. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Figure S10. Optimized structures of BP-SA --- vanadium ion complexes. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Figure S11. Optimized structures of *Nafion* --- vanadium ion complexes. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Figure S12. Arrhenius plot of the temperature dependence of vanadium permeability for: **a.** Nafion 117, **b.** Nafion212, and **c.** BP-ArF4. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Complexes	Binding Energy (kcal/mol)					
	00.0					
comp1-BP-ArF4	23.9					
comp2- <i>BP-ArF4</i>	22.6					
comp3- <i>BP-ArF4</i>	33.8					
comp4-BP-ArF4	26.3					
comp1-BP-ArSA	14.2					
comp2-BP-ArSA	20.5					
comp1-BP-SA	21.4					
comp2-BP-SA	19.0					
comp1-Nafion	13.7					
comp2-Nafion	21.0					

Table S1. Binding energy between the vanadium ion/BP-ArF4 and vanadium ion/Nafion. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Table S2. Activation energy of Nafion 117, Nafion 212 and BP-ArF4 obtained by measuring vanadium ion permeability at different temperature. Related to the SAXS and DFT studies: selective ion transport mechanism section in the main test.

Membrane	Activation Energy (kcal/mol)
Nafion 117	4.53
Nafion 212	5.40
BP-ArF4	9.14

Samples	<mark>Type of</mark> membrane	VO ²⁺ Permeability (×10 ⁻⁷ cm ² /min)	Resistivity (Ω⋅cm)	Ref.
S-Radel	PEM	2.1	46.79	1
SPEEK	PEM	11-12	59-61	2
SPTKK	PEM	~1.8	73.5	3
SPTK	PEM	~0.7	95.2	3
SPAES	PEM	~1.6	~70-80	4
SPBI30	PEM	0.17	86	5
BPSH60	PEM	210	8.3	6
N115	PEM	33	39.4	7
XL100	PEM	25.7	86.1	8
SPFEK	PEM	9.85	58.82	9
Nafion117	PEM	37	16.9	10
Nafion212	PEM	41	13.5	6
BP-ArF4	PEM	10	17.36	This work
QA-PFE	AEM	~0	~200	11
QPPAE-2/1	AEM	~0	154	12
QPPP-2	AEM	0.09	400	13
QPEK-C- TMA+	AEM	4.8	179	14
C6QPSF	AEM	0.5	63	15
PAEK-API	AEM	1.31	250	16
QDAPP	AEM	1.8	108	17
PSF-TMA	AEM	0.26	250	18
PyPPEKK	AEM	0.684	143	19

Table S3. Comparison of VO²⁺ permeability and resistivity of membranes reported from literatures. Related to the breaking the trade-off limitations in IEMs section in the main test.

Sample	Туре	CE (%)	VE (%)	EE (%)	Curren density (mA/cm	t / ²)	Self- discha -rge time (hour)	Capacity retention/ Cycle #	Capacity decay rate (per cycle)/Current density (mA/cm ²)	Thick -ness (µm)	Vanadium sulfate/H ₂ SO ₄ concentra -tion	Ref.
Nafion	PEM	91.7	92.3	84.7	50		80	N/A	N/A	127	1.5M/3M	20
115												
Nafion	PEM	92	86	79	80		40	N/A	N/A	60	1.5M/3M	21
212												
SPPEK	PEM	98.8	75.5	74.6	60		N/A	N/A	N/A	20	1.5M/3M	1
SPEEK4	PEM	98.5	88.8	87.5	50		170	N/A	N/A	90	1.5M/3M	20
0												
SPEEK5	PEM	97.3	86.3	84.0	50		N/A	N/A	N/A	85	1.5M/3M	20
0												
SPEEK6	PEM	96.1	87.6	84.2	50		N/A	N/A	N/A	90	1.5M/3M	20
0												
S-	PEM	89.5	92.2	82.6	20		N/A	~60%/	0.4%/20	172	1M/2M	22
PAEK-								100				
40												
Nafion	PEM	90	94	84.6	40		30	~50%/	0.25/80	175	1.5M/2M	23
117								200				
0005												24
SPSF-	PEM	94.9	94.0	89.2	50		29	N/A	N/A	76	1.5M/3M	24
62	DEM	00	00.0	00.4	10		440	70.00//	0.040/400	74		25
SPI-50	PEM	96	93.8	90.1	40		110	/8.2%/	0.218/160	71	1.5101/2101	20
		400	05	0.5		~~						5
SPBI-30	PEM	~100	~85	~85		80	384	54.95%/	0.09%/100	35	1.5M/3M	0
		~100	~88	~88		60		500				
		99.4	86.4	85.9	80							
BP-ArF4	PEM	99.2	89.5	88.8	60		209.5	84%/ 200	0.08%/100	88	1.6M/4M	This
		98.6	93.2	91.9	40							work
		97.3	96.4	93.9	20							
QA-PFE	AEM	~100	~78	~78	40		N/A	N/A	N/A	~50	1M/2.5M	11
QPPAE-	AEM	99.3	88.9	88.4	50		N/A	70%/	0.08%/50	N/A	1.65M/3	12
2/1								500			М	
AIEM	AEM	95.6	78.5	75.1	40		~300	N/A	N/A	43	1.5M/2.5	26
											М	
QPPP-2	AEM	~99	~87	~87	80		N/A	92%/30	0.26%/80	~35	1.65M/3	13
											М	
QPEK-	AEM	~99	~81	~80	30		N/A	N/A	N/A	40	1.5M/3M	14
C-TMA+												07
QAPPE	AEM	98.4	83.8	82.5	40		N/A	N/A	N/A	~40	1.5M/3M	27
K												00
DF-a2	AEM	98.5	84.6	83.3	50		35	N/A	N/A	~300	1.5M/3M	28

Table S4. Comparison of VRFB efficiencies, self-discharge time, and capacity retention/decay rate with PEMs and AEMs reported from literatures. Related to the breaking the trade-off limitations in IEMs section in the main test.

QS-	AEM	98	91.5	89.7	50	N/A	70%/80	0.375%/N/A	~40	1.5M/3M	15
AIEM											
PAEK-	AEM	96.4	86.5	83.4	60	N/A	84%/100	0.16%/40	~130	1.5M/3M	16
API											
QDAPP	AEM	99	85	85	200	N/A	94%/20	0.3%/N/A	N/A	1.7M/5M	17
PyPPEK	AEM	98.4	90.3	88.9	40	N/A	N/A	N/A	45	1.5M/3M	19
К											

Reference

(1) Wang, N.; Yu, J.; Zhou, Z.; Fang, D.; Liu, S.; Liu, Y., SPPEK/TPA composite membrane as a separator of vanadium redox flow battery. *J. Membr. Sci.* **2013**, *437*, 114-121.

(2) Dai, W.; Shen, Y.; Li, Z.; Yu, L.; Xi, J.; Qiu, X., SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery. *J. Mater. Chem. A* **2014**, *2* (31), 12423-12432.

(3) Chen, D.; Wang, S.; Xiao, M.; Meng, Y., Synthesis and characterization of novel sulfonated poly (arylene thioether) ionomers for vanadium redox flow battery applications. *Energy Environ. Sci* **2010**, *3* (5), 622-628.

(4) Chen, D.; Wang, S.; Xiao, M.; Meng, Y., Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery. *Energy Conversion and Management* **2010**, *51* (12), 2816-2824.

(5) Ding, L.; Song, X.; Wang, L.; Zhao, Z., Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications. *J. Membr. Sci.* **2019**, *578*, 126-135.

(6) Wang, T.; Moon, S. J.; Hwang, D.-S.; Park, H.; Lee, J.; Kim, S.; Lee, Y. M.; Kim, S., Selective ion transport for a vanadium redox flow battery (VRFB) in nano-crack regulated proton exchange membranes. *J. Membr. Sci.* **2019**, *583*, 16-22.

(7) Zhou, X.; Zhao, T.; An, L.; Zeng, Y.; Zhu, X., Performance of a vanadium redox flow battery with a VANADion membrane. *Applied Energy* **2016**, *180*, 353-359.

(8) Xie, W.; Darling, R. M.; Perry, M. L., Processing and pretreatment effects on vanadium transport in nafion membranes. *J. Electrochem. Soc.* **2016**, *163* (1), A5084-A5089.

(9) Chen, D.; Wang, S.; Xiao, M.; Meng, Y., Preparation and properties of sulfonated poly (fluorenyl ether ketone) membrane for vanadium redox flow battery application. *J. Power Sources* **2010**, *195* (7), 2089-2095.

(10) Teng, X.; Zhao, Y.; Xi, J.; Wu, Z.; Qiu, X.; Chen, L., Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. *J. Power Sources* **2009**, *189* (2), 1240-1246.

(11) Chen, D.; Hickner, M. A.; Agar, E.; Kumbur, E. C., Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries. *Electrochem. commun.* **2013**, *26*, 37-40.

(12) Cha, M. S.; Lee, J. Y.; Kim, T.-H.; Jeong, H. Y.; Shin, H. Y.; Oh, S.-G.; Hong, Y. T., Preparation and characterization of crosslinked anion exchange membrane (AEM) materials with poly (phenylene ether)-based short hydrophilic block for use in electrochemical applications. *J. Membr. Sci.* **2017**, *530*, 73-83.

(13) Cha, M. S.; Jo, S. W.; Han, S. H.; Hong, S. H.; So, S.; Kim, T.-H.; Oh, S.-G.; Hong, Y. T.; Lee, J. Y., Etherfree polymeric anion exchange materials with extremely low vanadium ion permeability and outstanding cell performance for vanadium redox flow battery (VRFB) application. *J. Power Sources* **2019**, *413*, 158-166.

(14) Yun, S.; Parrondo, J.; Ramani, V., Derivatized cardo-polyetherketone anion exchange membranes for all-vanadium redox flow batteries. *J. Mater. Chem. A* **2014**, *2* (18), 6605-6615.

(15) Chen, Y.; Zhang, S.; Jin, J.; Liu, C.; Liu, Q.; Jian, X., Poly (phthalazinone ether ketone) amphoteric ion exchange membranes with low water transport and vanadium permeability for vanadium redox flow battery application. *ACS Appl. Energy Mater.* **2019**, *2* (11), 8207-8218.

(16) Ahn, Y.; Kim, D., Anion exchange membrane prepared from imidazolium grafted poly (arylene ether ketone) with enhanced durability for vanadium redox flow battery. *J. Ind. Eng. Chem.* **2019**, *71*, 361-368.

(17) Sun, C.-N.; Tang, Z.; Belcher, C.; Zawodzinski, T. A.; Fujimoto, C., Evaluation of Diels–Alder poly (phenylene) anion exchange membranes in all-vanadium redox flow batteries. *Electrochem. commun.* **2014**, *43*, 63-66.

(18) Min-suk, J. J.; Parrondo, J.; Arges, C. G.; Ramani, V., Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. *J. Mater. Chem. A* **2013**, *1* (35), 10458-10464.

(19) Zhang, S.; Zhang, B.; Xing, D.; Jian, X., Poly (phthalazinone ether ketone ketone) anion exchange membranes with pyridinium as ion exchange groups for vanadium redox flow battery applications. *J. Mater. Chem. A* **2013**, *1* (39), 12246-12254.

(20) Mai, Z.; Zhang, H.; Li, X.; Bi, C.; Dai, H., Sulfonated poly (tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application. *J. Power Sources* **2011**, *196* (1), 482-487.

(21) Zhang, F.; Zhang, H.; Qu, C., Influence of solvent on polymer prequaternization toward anionconductive membrane fabrication for all-vanadium flow battery. *J. Phys. Chem. B* **2012**, *116* (30), 9016-9022.

(22) Yang, S.; Ahn, Y.; Kim, D., Poly (arylene ether ketone) proton exchange membranes grafted with long aliphatic pendant sulfonated groups for vanadium redox flow batteries. *J. Mater. Chem. A* **2017**, *5* (5), 2261-2270.

(23) Jiang, B.; Wu, L.; Yu, L.; Qiu, X.; Xi, J., A comparative study of Nafion series membranes for vanadium redox flow batteries. *J. Membr. Sci.* **2016**, *510*, 18-26.

(24) Zhang, Y.; Zheng, L.; Liu, B.; Wang, H.; Shi, H., Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery. *J. Membr. Sci.* **2019**, *584*, 173-180.

(25) Wang, L.; Yu, L.; Mu, D.; Yu, L.; Wang, L.; Xi, J., Acid-base membranes of imidazole-based sulfonated polyimides for vanadium flow batteries. *J. Membr. Sci.* **2018**, *552*, 167-176.

(26) Qiu, J.; Zhai, M.; Chen, J.; Wang, Y.; Peng, J.; Xu, L.; Li, J.; Wei, G., Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method. *J. Membr. Sci.* **2009**, *342* (1-2), 215-220.

(27) Zhang, S.; Yin, C.; Xing, D.; Yang, D.; Jian, X., Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications. *J. Membr. Sci.* **2010**, *363* (1-2), 243-249.

(28) Wang, N.; Zhang, F.; Zhang, R.; Zhou, W.; Lu, D., Sulfonation of Poly (phenylene oxide) Anion Exchange Membrane for All Vanadium Flow Redox Battery. *Int. J. Electrochem. Sci* **2019**, *14*, 5508-5520.