Supporting Information

Protein – Inorganic Nano Hybrid Sheets of Pd Embedded BSA as Robust Catalyst in Water for Oxidase Mimic Activity and C-C Coupling Reactions, and as Sustainable Material for Micromolar Sensing of Dopamine

Sirilata Polepalli^a, Bhawna Uttam^a and Chebrolu Pulla Rao^{b*}

^aBioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India, E-mail: <u>cprao@iitb.ac.in</u>

^bDepartment of Chemistry, Indian Institute of Technology Tirupati, Settipalli post, Tirupati– 517506, Andhra Pradesh, India, E-mail: <u>cprao@iittp.ac.in</u>

Contents

SI01. TEM images of naked Pd_NPs, Pd_BSA1 and Pd_BSA2	S2
SI02. TEM images of Pd_NPs@BSA _{sheet}	S2
SI03. EDS and elemental mapping of Pd_NPs@BSA _{sheet}	. S3
SI04. AFM and SEM micrographs of Pd_NPs and Pd_NPs@BSA _{sheet}	S3
SI05. Oxidase mimic activity of Pd_NPs@BSA _{sheet} at pH 7.4 and	
enzyme kinetics	. S4
SI06. Optimised conditions for Suzuki coupling	S4
SI07. Substrate scope of Pd_NPs@BSA _{sheet} catalyst in Suzuki coupling reaction	s S5
SI08. Characterisation data of Suzuki coupling reaction products	S6
SI09. ¹ H-NMR and GC-MS spectral data of all the cross coupled products	S8

SI01. TEM Images of Naked Pd_NPs, Pd_BSA1 and Pd_BSA2.

Figure S01. TEM images of (a) Naked Pd_NPs. (b) Spherical aggregates of Pd_BSA₁. (c) Initiation of smaller sheet formation in Pd_BSA₂.

SI02. TEM Images of Pd_NPs@BSA_{sheet}

Figure S02. (a-c) are the TEM images of Pd_NPs@BSA_{sheet} sheets. (d-g) HR-TEM of Pd_NPs embedded in Pd_NPs@BSA_{sheet}. Scale bar of (a) is (-200 nm), (b) is (-50 nm), (c) is (-20 nm), (d) is 5 nm, (e-g) is 2 nm.

SI03. EDS and Elemental Mapping of Pd_NPs@BSA_{sheet}.

Figure S03. (a) EDS of Pd_NPs@BSA_{sheet}. (b) Percentage element composition of Pd_NPs@BSA_{sheet} from EDS. (c) Aggregate of Pd_NPs@BSA_{sheet} area where line mapping is performed. Line mapping of (d) Carbon (red) (e) Nitrogen (yellow) (f) Oxygen (green) (g) Sulphur (blue) (h) Palladium (purple).

SI04. AFM and SEM Micrographs of Pd_NPs and Pd_NPs@BSA_{sheet}.

Figure S04. SEM images of (a) Naked Pd_NPs (scale bar -100 nm). (b) Hybrid Pd_NPs@BSA_{sheet}. Folds in the sheets are marked with yellow arrow. (scale bar $- 1 \mu m$). AFM images of (c) Naked Pd_NPs (scale bar $- 2 \mu m$). (d) Pd_NPs@BSA_{sheet} where the edges are marked with black arrow. (scale bar $- 30 \mu m$).

SI05. Oxidase mimic activity of Pd_NPs@BSA_{sheet} at pH 7.4 and enzyme kinetics

Figure S05. Oxidase activity of Pd_NPs@BSA_{sheet} with varying substrate (TMB) concentrations at pH 7.4.[black – 0.1 mM, red – 0.3 mM, blue – 0.5 mM, magenta – 0.8 mM, green – 1 mM] using 100 μ g/mL Pd_NPs@BSA_{sheet} as catalyst at following time points: 1, 2, 4, 6, 8, 10, 15, 20, 30 minutes respectively. (b) steady state kinetics and (c) double reciprocal plots for calculation of K_m and V_{max} for oxidase activity of Pd_NPs@BSA_{sheet} at pH 7.4.

Figure S06. Optimised reaction conditions of Suzuki coupling for biphenyl product formation with varying conditions obtained from GC-MS yield (a) Amount of catalyst, (b) Temperature and (c) Time.

SI07. Substrate Scope of Pd_NPs@BSA_{sheet} Catalyst in Suzuki Coupling Reactions.

Table S01. Suzuki coupling reactions of iodobenzene with derivatives of phenylboronic acidcatalyzed by Pd_NPs@BSA_{sheet}.

Pd_NPs@BSA_{sheet}

Entry	Y	Z Product	% Con. /Sel.	TOF h ⁻¹
1		1a	94.4/ 100	980
2		1b	98.5/ 100	1022
3		1c	93.6/ 99.5	972
4		1d	96.8/ 100	1005
5		1e	95.2/ 100	988
6		1f	92.7/ 90.5	962
7		1g	96.6/ 100	1003
8		1h	$86.6/80.2^{a}$	899
9		li	95.8/ 100	994
10		1j	96.8/ 77.6 ^b	1005
11		1k	85.4/ 83.6 ^c	886

Reaction conditions: A = iodobenzene (0.49 mmol) (1 equiv), B = phenylboronic acid (0.74 mmol), K₂CO₃ (0.98 mmol), Pd_NPs@BSA_{sheet} (5mg, 0.059 mol%), temperature (80 °C), time (8h). Major by-products: ^{*a*}2,2'-dimethoxy-1,1'-biphenyl, ^{*b*}3,3',5,5'-tetramethyl-1,1'-biphenyl, ^{*c*}3,3',4,4'-tetramethoxy-1,1'-biphenyl. Yield was calculated based on the GC-MS data. Turn over frequency calculated as (moles of product) / (moles of catalyst in terms of Pd × time in h)

SI08. Characterisation data of Suzuki Coupling Reaction Products.

Characterization Data of 1,1'-Biphenyl (1a). White solid; mp: 68–70°C, ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.60 (dd, *J*= 8.5, 1.5 Hz, 4H), 7.45 (t, *J*= 8.0 Hz, 4H), 7.35(t, *J*= 7.5 Hz, 2H).

Characterization Data of 4-fluoro-1, 1'-Biphenyl (1b). White solid; mp: 75-79 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.22 (dd, J= 6.0, 2.4 Hz, 3H), 7.76–7.72 (m, 1H), 7.22–7.16 (m, 4H), 7.12–7.06 (m, 1H).

Characterization Data of 4-Chloro-1, 1'-Biphenyl (1c). White solid; mp: 77-79°C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.50-7.46 (m, 4H), 7.42-7.39 (m, 5H).

Characterization Data of 4-methyl-1, 1'-biphenyl (1d). White solid; mp: 44-46 °C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.58 (d, J = 7.6 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H,), 7.25 (2H, d, J = 7.6 Hz), 2.40 (s, 3H).

Characterization Data of [[1, 1'-biphenyl]-4-carbaldehyde (**1e**). White solid; mp: 57-59 °C, ¹H NMR (400 MHz, CDCl₃): δ (ppm) 10.06 (s, 1H), 7.95 (dt, *J*= 8.0, 1.6 Hz, 2H), 7.75 (dd, *J*= 6.4, 1.6 Hz, 2H), 7.64 (dt, *J*= 7.2, 1.5 Hz, 2H), 7.5-7.40 (m, 3H).

Characterization Data of 1-{[1-1'biphenyl]-4-yl} ethane-1-one (1f). White solid; mp: 116–118°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.03 (dt, *J* = 8.5 Hz, 2.0 Hz, 2H), 7.69 (dt,

J = 8.5 Hz, 2 Hz, 2H), 7.63 (dd, *J* = 8.0 Hz, 1.5 Hz, 2H,), 7.47 (t, *J* = 7.5 Hz, 2 H), 7.42-7.39 (m, 1H), 2.64 (s, 3H).

Characterization Data of [1, 1'-biphenyl]-4-carbonitrile (1g). White solid; mp: 82-85 °C, ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.74–7.67 (m, 4H,), 7.59 (d, *J* = 8.0 Hz, 2H), 7.51– 7.41 (m, 3H).

Characterization Data of 2-methoxy-1,1'-biphenyl (1h). White solid; mp 31-33°C; ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.54 (d, J = 8.0, 2H,), 7.42 (t, J = 7.5, 2H), 7.35–7.32 (m, 3H), 7.04 (t, J = 7.0, 1H), 6.99 (d, J = 8.5, 1H,), 3.82 (3H, s).

Characterization Data of 3-(trifluoromethyl)-1,1'-biphenyl (1i). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.42 (d, 1H,), 8.02 (s, 1H), 7.94-7.83 (m, 2H), 7.78-7.26 (m, 5H).

Characterization Data of 3, 5-dimethyl-1, 1'-biphenyl (1j). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.58 (d, *J*= 7.2 Hz, 2H), 7.43 (t, *J*= 7.6 Hz, 2H), 7.35 (t, *J*= 7.2 Hz, 1H), 7.24 (s, 2H), 7.02 (s, 1H), 2.39 (s, 6H).

Characterization Data of 3, 4-dimethoxy-1, 1'-biphenyl (**1k**). White solid; mp: 43-46°C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.56 (dd, *J*= 8.0, 1.2 Hz , 2H), 7.43 (t, *J*= 7.2 Hz, 2H), 7.34-7.30 (m, 1H), 7.17-7.11 (m, 2H), 6.95 (d, *J*= 8.4 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H).

500000 63.1 82.9 0 0 115.1 189.1 204.0 218.0 237.0 252.1 267.1 294.0 313.0 339.1 356.1 372.2 189.1 204.0 218.0 237.0 252.1 267.1 294.0 313.0 339.1 356.1 372.2 m/z--> 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380

Figure S07. (a to u) are the ¹H spectra and GC-MS of Suzuki cross coupled products.