Supplementary Information

Enhancement in Performance of Ternary Blend-Polymer Solar Cells using PEDOT:PSS-Graphene Oxide Hole Transport Layer via Förster Resonance Energy Transfer and Balanced Charge Transport

Lalsingh Guguloth^a, Kuldeep Singh^b, V S Reddy Channu^c and Kusum Kumari^{*a}

- ^b CSIR-Central Electrochemical Research Institute, Chennai Unit, CSIR Madras Complex, Taramani, Chennai-600113, Tamilnadu, India.
- ^c SMC Corporation, College Station, Texas, TX 77845, United States of America.
- * Corresponding author: Email: kusum@nitw.ac.in

^a Department of Physics, National Institute of Technology, Warangal - 506004, Telangana, India.

Fig. S1. (a, b) FESEM and AFM image of GO Nanosheets on ITO substrate. The white line shows the height scan of the single GO nanosheets resulting in vertical distance ~ 1.1 nm within the marked portion. (c, d) FESEM and AFM image of PEDOT:PSS-GO (1:1) Nanosheets on ITO substrate.

Fig. S2. (a) XRD spectra. (b) Raman Spectra of Graphene Oxide.

Fig. S3. (a) Transmittance spectra of GO,PEDOT:PSS, PEDOT:PSS-GO composite films in (1:1) weight ratio.

Fig. S4. (a) UV-Vis absorption spectra of GO,PEDOT:PSS, PEDOT:PSS-GO composite films in (1:1) weight ratio. (b-d) Tauc Plots to estimate the band gap (E_g) of GO,PEDOT:PSS, PEDOT:PSS-GO (1:1) composite films, respectively.

Fig. S5. The UPS measurements of GO, PEDOT:PSS and PEDOT:GO composite films (weight ratio of (1:1); (a) secondary electron cutoff regions and (b) Fermi edge (valence band edge) regions; Source (hv = 21.2 eV).

Sample	E _{cutoff} (eV)	$E_{HOMO edge} - E_F(0)$ (eV)	Φ (eV)	Е _{номо} (eV)	E _{LUMO} (eV)	E _g (eV)
PEDOT:PSS	16.4	0.21	4.8	5.01	3.3	1.71
GO	16.97	0.67	4.23	4.9	1.3	3.61
PEDOT:PSS-GO (1:1)	16.2	0.22	5.0	5.22	1.83	3.39

Table S1. E_{cutoff} , Work function(ϕ), E_{HOMO} and E_{LUMO} , E_g determined from UPS analysis.

Fig. S6. *J-V* characteristics of TPSC Device 1: ITO/ PEDOT:PSS-GO(1:1)/ P3HT:PTB7-Th:PCBM (0.3:0.7:1)/ LiF/Al, and TPSC Device 4: ITO/ PEDOT:PSS/ P3HT:PTB7-Th:PCBM (0.3:0.7:1)/ LiF/Al, under Air Mass 1.5 Solar illumination (*P*_{in} =100 mW/cm²).

Device Parameters	Device 4 (with PEDOT:PSS HTL)	Device 1 (with PEDOT:PSS-GO HTL)
J _{sc} (mA/cm2)	10.7	12.3
V _{oc} (V)	0.69	0.74
FF	0.43	0.78
PCE (%)	3.2	7.1
R _s (Ω cm²)	17	5
R_{sh} (Ω cm ²)	977	4111

Table S2: Photovoltaic parameters for TPSCs: Device 1 and Device 4.