# **Supplementary Information**

## Flame spheroidisation of dense and porous Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> microspheres

Jesús Molinar Díaz<sup>a</sup>, Sabrin Abdus Samad<sup>a</sup>, Elisabeth Steer<sup>b</sup>, Nigel Neate<sup>b,c</sup>, Hannah Constantin<sup>c</sup>, Md Towhidul Islam<sup>a,d</sup>, Paul D Brown<sup>a,b</sup> Ifty Ahmed<sup>a\*</sup>

<sup>a</sup> Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK

<sup>b</sup> Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

<sup>c</sup> Department of Mechanical, Materials and Manufacturing Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

<sup>d</sup> Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh

\* Corresponding author. Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK. E-mail address: ifty:ahmed@nottingham.ac.uk

#### **1.0 Structural Analysis**

Complementary XRD investigations were performed to establish the crystalline structures of the Fe<sub>3</sub>O<sub>4</sub> and CaCO<sub>3</sub> powders, both pre and post FS-processing, to clarify the structural transformations of these materials when processed individually (Figure S1). The structures of the starting materials were confirmed as Fe<sub>3</sub>O<sub>4</sub> and CaCO<sub>3</sub> (Figures S1c and S1d, respectively). FS-processed magnetite powders (in the form of solid microspheres from SEM observations) were found to remain predominantly as Fe<sub>3</sub>O<sub>4</sub>, with some evidence for the development of trace amounts of Fe<sub>2</sub>O<sub>3</sub> (Figure S1a). FS-processed porogen exhibited diffraction peaks attributable to both CaCO<sub>3</sub> and CaO (Figure S1b).



Fig. S1. XRD data for: (a) FS-processed Fe<sub>3</sub>O<sub>4</sub>; (b) FS-processed CaCO<sub>3</sub>;(c) Fe<sub>3</sub>O<sub>4</sub> starting powder; and (d) CaCO<sub>3</sub> starting porogen

#### 2.0 Magnetic expression

A simple experiment using a magnet confirmed the sieved FS-processed  $Ca_2Fe_2O_5$  products to indeed be magnetic (Figure S2).



Fig. S2. Magnet placed next to FS-processed  $Fe_3O_4$ :CaCO<sub>3</sub>, following sieving, demonstrating the  $Ca_2Fe_2O_5$  microsphere products to be magnetic.

#### **3.0 Mineral Mapping**

| Table S1. Wineral reference                                     |      |      |       |  |  |
|-----------------------------------------------------------------|------|------|-------|--|--|
| Mineral                                                         | Ca%  | Fe%  | 0%    |  |  |
| Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> (srebrodolskite) | 19.1 | 57   | 23.9  |  |  |
| Fe <sub>3</sub> O <sub>4</sub>                                  | -    | 72.4 | 27.64 |  |  |
| Compound 1                                                      | 3.6  | 73.8 | 22.6  |  |  |
| Compound 2                                                      | 9.6  | 67.3 | 23.1  |  |  |
| Compound 3                                                      | 15.1 | 61.3 | 23.6  |  |  |
| Compound 4                                                      | 48.4 | 28.9 | 22.6  |  |  |

### able S1. Mineral reference

#### Table S2. Modal minerology

| Mineral                                                         | Particles | Weight % |  |
|-----------------------------------------------------------------|-----------|----------|--|
| Ca <sub>2</sub> Fe <sub>2</sub> O <sub>5</sub> (srebrodolskite) | 1501      | 99.75    |  |
| Fe <sub>3</sub> O <sub>4</sub>                                  | 5         | 0.01     |  |
| Compound 1                                                      | 2         | 0.01     |  |
| Compound 2                                                      | 3         | 0.01     |  |
| Compound 3                                                      | 24        | 0.08     |  |
| Compound 4                                                      | 25        | 0.14     |  |
| Unknown                                                         | 46        | 0.00     |  |



**Fig. S3.** Full MLA compositional analysis of FS-processed Fe<sub>3</sub>O<sub>4</sub>:CaCO<sub>3</sub>, following sieving and sectioning, demonstrating very high levels of Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub>, along with very low levels of related CaFeO phases and Fe<sub>3</sub>O<sub>4</sub>.

#### 4.0 Products before and after FS



Fig. S4. a) Prepared Fe<sub>3</sub>O<sub>4</sub> / CaCO<sub>3</sub> mixture with PVA. Powder used for both FS and HT-XRD analysis; b) Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> porous microsphere (centre) and dense microspheres (background) after FS processing.

#### 5.0 Surface analysis

Complementary X-ray photoelectron spectroscopy (VG ESCALab Mark II X-ray Photoelectron and Scanning Auger Spectrometer; Al K $\alpha$  source; 20 mA; 20 kV; step 1; No. of scans 2; dwell 0.2; pass energy 50 eV, Constant Analyser Energy mode) study was performed to analyse the surface chemistry of the FS-processed Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> porous and dense microspheres. Figure S5 presents a survey spectra of the srebrodolskite microspheres.



**Fig. S5.** XPS of FS-processed Ca<sub>2</sub>Fe<sub>2</sub>O<sub>5</sub> porous and dense microspheres.