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Section I

Table S1 Few reports on the biosynthesis of silver and palladium nanocomposites

Entry Biomaterial Condition of synthesis Reactants Particle size 
(nm) Ref

Guar gum 
(GG)

GG was dissolved in 10 
mL of water (pH 6). 
After complete 
dissolution, the 
temperature was 
increased to 70 ºC and 
then reactant was added

AgNO3 
solution 4-12 1

Latex from 
Jatropha 
Curcas 
plant

3%  latex solution was 
formed by diluting with 
water and the same 
amount of reactant was 
mixed 

AgNO3 
solution ~20-35 2

Carboxyme
thyl 
cellulose 
sodium 
(CMS)

10 mL of reactant was 
mixed with certain 
volume of 0.1% CMS 
with continuous stirring

AgNO3 
solution ~15 3

Terminalia 
Chebula 
fruit

Aqueous extract of fruit 
was treated with reactant 
solution

AgNO3  
solution 25 4

Leaf 
extract of 
Mimusops 
elengi

The crude extract was 
first filtered and then 
mixed with a reactant

AgNO3 
solution 55-83 5

Si
lv

er
 N

an
oc

om
po

si
te

Glucose

NH3 was added slowly 
to the reactant solution 
to get AgOH/Ag2O ppt. 
Then the Ag(NH3)2OH 
solution was mixed with 
graphene oxide (GO) 
and glucose-containing 
solution

AgNO3 
solution -- 6
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Montmorill
onite 
(MMT)

The reactant was 
dissolved in chitosan 
solution under constant 
stirring, then it was 
added to MMT 
suspension and 
vigorously stirred for 4 
h at room temperature

AgNO3 
solution 10.97 ± 5.60 7

Poly(3,4-
ethylenedio
xythiophen
e) 
(PEDOT)

The entire process was 
done in a round-bottom 
flask equipped with a 
magnetic stirrer. 3,4-
ethylenedioxythiophene 
(EDOT) alcoholic 
solution was rapidly 
added into reactant 
under vigorous stirring 
for 3 h

H2PdCl4 
solution ~4.5 8

Reduced 
graphene 
oxide 
(rGO)-
carbon 
nanotube 
(CNT)

rGO-CNT was dipped 
into an aqueous solution 
of reactant maintained in 
a vial under vigorous 
stirring for 30 min in an 
ice bath

K2PdCl4 
aqueous 
solution

4 9

Fruits of 
Piper 
Longum

 Aqueous extract of 
fruits of piper longum 
was added to reactant 
and natrolite zeolite was 
added and stirred for 15 
h at 100 ºC

PdCl2 solution _ 10

Pa
lla

di
um

 N
an

oc
om

po
si

te

Theobroma 
cacao L. 
seeds
extract

Cocoa seed aqueous 
extract was added 
dropwise to  a well-
mixed solution of the 
reactant with constant 
stirring at 50 °C for
2 h

PdCl2 solution ~40 11
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Extract of 
marine 
alga, 
Sargassum 
bovinum

Aqueous extract of the 
reactant was mixed with 
crude extract of marine 
alga. The whole mixture 
was put into a rotary 
shaker at 60 °C (160 
rpm) for 24 h and 
maintained in the dark

PdCl2 solution ~5 12

g-C3N4

g-C3N4 was dispersed in 
isopropyl alcohol with 
sonication in a low 
power sonic-bath for 30 
min. Then it was stirred, 
and reactant solution (1 
M) was added under 
continuous stirring for 2 
h at room temperature

Pd(NO3)2 
solution -- 13

A
g,

 P
d 

an
d 

A
g-

Pd
 

na
no

co
m

po
si

te

Rutin

Different pH solutions 
of rutin were treated 
with same concentration 
of reactant solution(s). 
For Ag@rutin, the 
nanocomposite was 
obtained within 5 to 10 
mins. For the formation 
of Pd@rutin and Ag-
Pd@rutin, around 72 h 
reaction time was 
required at 40 °C 

AgNO3 and 
PdCl2

~50 nm for 
Ag@rutin, ~10 

nm for 
Pd@rutin and 

~80 nm for Ag-
Pd@rutin

This Work
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Section II

Spectral Study:

i) The visual color change of rutin solution adjusted at different pHs with the gradual 

addition of PdCl2, AgNO3 and PdCl2-AgNO3 mixture

Rutin Pd@
rutin

Ag-
Pd@
rutin

Ag@
rutin

a

Rutin Pd@
rutin

Ag-
Pd@
rutin

Ag@
rutin

d

Rutin Pd@
rutin

Ag-
Pd@
rutin

Ag@
rutin

b

Rutin Pd@
rutin

Ag-
Pd@
rutin

Ag@
rutin

e

Rutin Pd@
rutin

Ag-
Pd@
rutin

Ag@
rutin

c

Rutin Pd@
rutin

Ag-
Pd@
rutin

Ag@
rutin

f

Fig. S1 Pictorial presentation of pristine rutin, Pd@rutin, Ag-Pd@rutin and Ag@rutin prepared 
in (a) pH1; (b) pH 3; (c) pH 5; (d) pH 7; (e) pH 9; (f) pH 12.

Table S2 Feed composition and yield of the prepared nanocomposites

Nanocomposites Feed Composition Yield (g)

Ag@rutin 5 mL 10 mM rutin solution of pH 12 + 5 mL 10 mM 
AgNO3 solution 0.0392

Pd@rutin 5 mL 10 mM rutin solution of pH 1 (Solution A) + 5 mL 
10 mM PdCl2 solution 0.0258

Ag-Pd@rutin Solution A + 2.5 mL 10 mM AgNO3 solution + 2.5 mL 10 
mM PdCl2 solution 0.0228



S6

ii) The absorption spectra of AgNO3, PdCl2 and AgNO3-PdCl2 mixture in respective pHs.
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 0.0025 (mM) Ag(I) soln. in 2 mL pH 12
 0.0050 (mM) Ag(I) soln. in 2 mL pH 12
 0.0074 (mM) Ag(I) soln. in 2 mL pH 12
 0.0100 (mM) Ag(I) soln. in 2 mL pH 12
 0.0123 (mM) Ag(I) soln. in 2 mL pH 12
 0.0148 (mM) Ag(I) soln. in 2 mL pH 12
 0.0172 (mM) Ag(I) soln. in 2 mL pH 12
 0.0196 (mM) Ag(I) soln. in 2 mL pH 12
 0.0220 (mM) Ag(I) soln. in 2 mL pH 12
 0.0244 (mM) Ag(I) soln. in 2 mL pH 12

Fig. S2 Absorption spectra of silver in pH 12.
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Fig. S3 Absorption spectra of palladium in pH 1 at 40 °C.
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Fig. S4 Absorption spectra of the silver-palladium bimetallic solution in pH 1 at 40 °C.
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Section III

XPS figures:
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Fig. S5 Survey scan data of Ag-Pd@rutin, Ag@rutin, and Pd@rutin NC samples with Pd 

atomic% data zoomed in the inset. Minimum three areas from each sample were acquired and 

average data is shown above. 

Ag-Pd@rutin NC
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Fig. S6 Representative C1s narrow scan spectra of NCs of Pd@rutin, Ag@rutin, and Ag-

Pd@rutin. The deconvolution of the narrow scan data is carried out with a constraint of mixed 

sp2 and sp3 C1s hydrocarbon peak fixed at 284.75 eV. Necessary post data acquisition peak shifts 

due to charging are carried out keeping this mixed hydrocarbon peak fixed, which is a standard 

practice in XPS analysis.
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Section IV

Reaction Optimization: 

Reaction optimization data using Ag@rutin and Ag-Pd@rutin catalyst.

Table S3 Standardization of reaction conditions using Ag@rutin catalysta

Entry Solvent Base Temp. (ºC) Time (h) Yieldb (%)
1 DMF NaHCO3 120 18 40

2 Toluene NaHCO3 110 18 27

3 Acetonitrile NaHCO3 78 18 12

4 Water NaHCO3 100 18 75

5 Water K2CO3 100 18 72

6 Water Cs2CO3 100 18 32

7 Water NaHCO3 60 18 43

8 Water NaHCO3 rt 30 -

9 Water NaHCO3 100 10 34

10 Water NaHCO3 100 22 75
aCondition: Cinnamyl acetate (1 mmol), p-cresol (1 mmol), base (2 mmol), Ag@rutin (1.7 mg, 
0.00027 mol%), solvent, temp., time; bYields refer to those of isolated products.
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Table S4 Standardization of reaction conditions using Ag-Pd@rutin catalysta

Entry Solvent Base Temp. (ºC) Time (h) Yieldb (%)
1 DMF NaHCO3 120 18 36

2 Toluene NaHCO3 110 18 8

3 Acetonitrile NaHCO3 78 18 <5

4 Water NaHCO3 100 18 72

5 Water K2CO3 100 18 67

6 Water Cs2CO3 100 18 22

7 Water NaHCO3 60 18 39

8 Water NaHCO3 rt 30 -

9 Water NaHCO3 100 10 30

10 Water NaHCO3 100 22 73
aCondition: Cinnamyl acetate (1 mmol), p-cresol (1 mmol), base (2 mmol), Ag-Pd@rutin (14.6 
mg, 0.00027 mol% of Ag and 0.000027 mol% of Pd), solvent, temp., time; bYields refer to those 
of isolated products.
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Section V

Comparison of the work:

The comparison between different palladium-catalyzed etherification reaction and this work

Table S5 Few reports on palladium-catalyzed etherification reactions

Entry Catalyst Reaction Conditions Yield 
(%)

Reusability 
of the 

catalyst
Reference

1 Pd(II)-PS-Ala
Cinnamyl acetate and p-

cresol, water, K2CO3, 16 h, 
reflux

90 5 14

2 Fe3O4–dopamine–Pd
Cinnamyl acetate and p-

cresol, water, NaHCO3, 5h, 
reflux

85 5 15

3 Fe3O4@SiO2Pd 
Cinnamyl acetate and p-

cresol, water, NaHCO3, 6h, 
reflux

85 4 16

4 Pd(PPh3)4

Allylic acetate and aliphatic 
alcohol, THF, Et2Zn, 25 °C, 2 

to 6 h
70 --- 17

5 [Pd(η3-C3H5)Cl]2

1,3-diphenylpropenyl acetate, 
benzyl alcohol, CH3CN, 

Cs2CO3, 10 °C, 24 h under 
argon atmosphere

98 --- 18

6

polystyrene–
poly(ethylene glycol) 

copolymer resin 
supported by Pd–

imidazoindolephosphin
e complex

Allylic ester, phenol, water, 
K2CO3, 25 °C, 12 h under N2 

atmosphere
94 2 19

7 PdCl2

2-iodophenol, phenylboronic 
acid, methylene chloride, 

DMF, Cs2CO3, 100 °C, 12 h
74 --- 20

8 Pd(CH3CN)2Cl2

1,3-diphenylallyl acetate, 
benzyl alcohol, CH3CN, 

Cs2CO3, 20 °C, 4 h
86 3 21

9 Pd(dba)2

Sodium 4-methoxyphenolate, 
1-bromo-2-methylbenzene, 

toluene, 80 °C, 12 h
85 --- 22

10 Pd(OAc)2
Allyl alcohol, p-cresol, 

benzene, PPh3, 50 °C, 4 -20 h 91 --- 23
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11 Pd(OAc)2

3-(2-bromo-phenyl)propan-1-
ol, toluene, Ca2CO3, 50 °C, 

21 h
85 --- 24

12 Pd@rutin
Cinnamyl acetate and p-

cresol, water, K2CO3, 18 h, 
reflux

88 4 This work
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Section VI
1H and 13C NMR spectra of synthesized products

1-(cinnamyloxy)-4-methylbenzene (Table 8, 3a): 1H NMR 300 MHz, CDCl3 δ 7.34-6.31 (m, 

11H), 4.60-4.58 (d, 2H), 2.21 (bs, 3H); 13C NMR 75 MHz, CDCl3 δ 156.55, 130, 114.70, 77.08, 

68.76, 20.89.

1-bromo-4-(cinnamyloxy)benzene (Table 8, 3b): 1H NMR 300 MHz, CDCl3 δ 7.34-7.16 (m, 

7H), 6.79-6.61 (m, 3H), 6.35-6.26 (m, 1H), 4.60-4.58 (q, 2H); 13C NMR 75 MHz, CDCl3 δ 

157.69, 130, 116.58, 113.02, 77.10, 68.81.

(E)-1-bromo-4-((3-(p-tolyl)allyl)oxy)benzene (Table 8, 3c): 1H NMR 300 MHz, CDCl3 δ 7.32-

6.23 (m, 10H), 4.59-4.57 (d, 2H), 2.27 (bs, 3H); 13C NMR 75 MHz, CDCl3 δ 158.19, 136.42, 

134.04, 132.63, 128.35, 127.85, 126.65, 124.19, 117.08, 113.45, 117.08, 113.45, 69.05, 20.59.

(E)-1-bromo-4-((3-(4-methoxyphenyl)allyl)oxy)-benzene (Table 8, 3d): 1H NMR 300 MHz, 

CDCl3 δ 7.27-6.17 (m, 10H), 4.55 (bs, 2H), 3.75 (bs, 3H); 13C NMR 75 MHz, CDCl3 δ 158, 133, 

128, 121.61, 116.66, 114.05, 76.8, 69.13, 55.29.

(E)-1-methoxy-4-(3-(p-tolyloxy)prop-1-en-1-yl)-benzene (Table 8, 3e): 1H NMR 300 MHz, 

CDCl3 δ 7.41-6.16 (m, 10H), 4.58-4.56 (d, 2H), 3.73 (bs, 3H), 2.20 (bs, 3H); 13C NMR 75 MHz, 

CDCl3 δ 159.5, 129.82, 121, 114, 76.80, 68.92, 55.22, 20.19.



S16

Fig. S5 1H and 13C-NMR spectra of 1-(cinnamyloxy)-4-methylbenzene (3a).
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Fig. S6 1H and 13C-NMR spectra of 1-bromo-4-(cinnamyloxy)benzene (3b).
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Fig. S7 1H and 13C-NMR spectrum of (E)-1-bromo-4-((3-(p-tolyl)allyl)oxy)benzene (3c).
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Fig. S8 1H and 13C-NMR spectra of (E)-1-bromo-4-((3-(4-methoxyphenyl)allyl)oxy)-benzene 
(3d).
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Fig. S9 1H and 13C-NMR spectra of (E)-1-methoxy-4-(3-(p-tolyloxy)prop-1-en-1-yl)-benzene 
(3e).
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