Supporting Information

Green Synthesis of Silver and Palladium Nanocomposites: A Study of Catalytic Activity towards Etherification Reaction

Pritam Singh¹, Mita Halder^{1,2}, Santanu Ray³, Adity Bose⁴ and Kamalika Sen^{1*}

¹Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India

²Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

³Surface Analysis Laboratory, School of Environment and Technology, University of Brighton,

Brighton, BN2 4GJ, United Kingdom

⁴Department of Chemistry, Presidency University, 86/1 College Street, Kolkata 700073, India *E-mail: <u>kamalchem.roy@gmail.com</u>

Table of content

	Page No.	
Section I		
Few reports on the biosynthesis of silver and palladium	S2-S4	
nanocomposites		
Section II		
Spectral study for interaction between rutin and metal solution at	S5-S8	
different pHs with the feed composition table		
Section III	\$9-\$10	
XPS figures	57-510	
Section IV	S11 S12	
Reaction Optimization	511-512	
Section V	S12 S14	
Comparison of the work	515-514	
Section VI	\$15 \$20	
¹ H and ¹³ C-NMR spectra of the synthesized products	515-520	
References	S21-S23	

Section I

Table S1 Few reports on the biosynthesis of silver and palladium nanocomposites

Entry	Biomaterial	naterial Condition of synthesis		Particle size (nm)	Ref
Silver Nanocomposite	Guar gum (GG)	GG was dissolved in 10 mL of water (pH 6). After complete dissolution, the temperature was increased to 70 °C and then reactant was added	AgNO ₃ solution	4-12	1
	Latex from Jatropha Curcas plant	3% latex solution was formed by diluting with water and the same amount of reactant was mixed	AgNO ₃ solution	~20-35	2
	Carboxyme thyl cellulose sodium (CMS)	10 mL of reactant was mixed with certain volume of 0.1% CMS with continuous stirring	AgNO ₃ solution	~15	3
	<i>Terminalia</i> <i>Chebula</i> fruit	Aqueous extract of fruit was treated with reactant solution	AgNO ₃ solution	25	4
	Leaf extract of <i>Mimusops</i> <i>elengi</i>	The crude extract was first filtered and then mixed with a reactant	AgNO ₃ solution	55-83	5
	Glucose	NH ₃ was added slowly to the reactant solution to get AgOH/Ag ₂ O ppt. Then the Ag(NH ₃) ₂ OH solution was mixed with graphene oxide (GO) and glucose-containing solution	AgNO ₃ solution		6

	Montmorill onite (MMT) The reactant was dissolved in chitosan solution under constant stirring, then it was added to MMT suspension and vigorously stirred for 4 h at room temperature		AgNO ₃ solution	10.97 ± 5.60	7
		The entire process was			
	Poly(3,4- ethylenedio xythiophen e) (PEDOT)	done in a round-bottom flask equipped with a magnetic stirrer. 3,4- ethylenedioxythiophene (EDOT) alcoholic solution was rapidly added into reactant under vigorous stirring for 3 h	H ₂ PdCl ₄ solution	~4.5	8
Palladium Nanocomposite	Reduced graphene oxide (rGO)- carbon nanotube (CNT)	rGO-CNT was dipped into an aqueous solution of reactant maintained in a vial under vigorous stirring for 30 min in an ice bath	K ₂ PdCl ₄ aqueous solution	4	9
	Fruits of Piper Longum	Aqueous extract of fruits of <i>piper longum</i> was added to reactant and natrolite zeolite was added and stirred for 15 h at 100 °C	PdCl ₂ solution	_	10
	<i>Theobroma</i> <i>cacao L.</i> seeds extract	Cocoa seed aqueous extract was added dropwise to a well- mixed solution of the reactant with constant stirring at 50 °C for 2 h	PdCl ₂ solution	~40	11

	Extract of marine alga, Sargassum bovinum	Aqueous extract of the reactant was mixed with crude extract of marine alga. The whole mixture was put into a rotary shaker at 60 °C (160 rpm) for 24 h and maintained in the dark	PdCl ₂ solution	~5	12
	g-C ₃ N ₄	g-C ₃ N ₄ was dispersed in isopropyl alcohol with sonication in a low power sonic-bath for 30 min. Then it was stirred, and reactant solution (1 M) was added under continuous stirring for 2 h at room temperature	Pd(NO ₃) ₂ solution		13
Ag, Pd and Ag-Pd nanocomposite	Rutin	Different pH solutions of rutin were treated with same concentration of reactant solution(s). For Ag@rutin, the nanocomposite was obtained within 5 to 10 mins. For the formation of Pd@rutin and Ag- Pd@rutin, around 72 h reaction time was required at 40 °C	AgNO ₃ and PdCl ₂	~50 nm for Ag@rutin, ~10 nm for Pd@rutin and ~80 nm for Ag- Pd@rutin	This Work

Section II

Spectral Study:

i) The visual color change of rutin solution adjusted at different pHs with the gradual addition of PdCl₂, AgNO₃ and PdCl₂-AgNO₃ mixture

Fig. S1 Pictorial presentation of pristine rutin, Pd@rutin, Ag-Pd@rutin and Ag@rutin prepared in (a) pH1; (b) pH 3; (c) pH 5; (d) pH 7; (e) pH 9; (f) pH 12.

Nanocomposites	Feed Composition	Yield (g)
Ag@rutin	5 mL 10 mM rutin solution of pH 12 + 5 mL 10 mM AgNO ₃ solution	0.0392
Pd@rutin	5 mL 10 mM rutin solution of pH 1 (Solution A) + 5 mL 10 mM PdCl ₂ solution	0.0258
Ag-Pd@rutin	Solution A + 2.5 mL 10 mM AgNO ₃ solution + 2.5 mL 10 mM PdCl ₂ solution	0.0228

Table S2 Feed composition and yield of the prepared nanocomposites

ii) The absorption spectra of AgNO₃, PdCl₂ and AgNO₃-PdCl₂ mixture in respective pHs.

Fig. S2 Absorption spectra of silver in pH 12.

Fig. S3 Absorption spectra of palladium in pH 1 at 40 °C.

Fig. S4 Absorption spectra of the silver-palladium bimetallic solution in pH 1 at 40 °C.

Section III

XPS figures:

Fig. S5 Survey scan data of Ag-Pd@rutin, Ag@rutin, and Pd@rutin NC samples with Pd atomic% data zoomed in the inset. Minimum three areas from each sample were acquired and average data is shown above.

Fig. S6 Representative C1s narrow scan spectra of NCs of Pd@rutin, Ag@rutin, and Ag-Pd@rutin. The deconvolution of the narrow scan data is carried out with a constraint of mixed sp² and sp³ C1s hydrocarbon peak fixed at 284.75 eV. Necessary post data acquisition peak shifts due to charging are carried out keeping this mixed hydrocarbon peak fixed, which is a standard practice in XPS analysis.

Section IV

Reaction Optimization:

Reaction optimization data using Ag@rutin and Ag-Pd@rutin catalyst.

Entry	Solvent	Base	Temp. (°C)	Time (h)	Yield ^b (%)
1	DMF	NaHCO ₃	120	18	40
2	Toluene	NaHCO ₃	110	18	27
3	Acetonitrile	NaHCO ₃	78	18	12
4	Water	NaHCO ₃	100	18	75
5	Water	K ₂ CO ₃	100	18	72
6	Water	Cs ₂ CO ₃	100	18	32
7	Water	NaHCO ₃	60	18	43
8	Water	NaHCO ₃	rt	30	-
9	Water	NaHCO ₃	100	10	34
10	Water	NaHCO ₃	100	22	75

Table S3 Standardization of reaction conditions using Ag@rutin catalyst^a

^aCondition: Cinnamyl acetate (1 mmol), *p*-cresol (1 mmol), base (2 mmol), Ag@rutin (1.7 mg, 0.00027 mol%), solvent, temp., time; ^bYields refer to those of isolated products.

Entry	Solvent	Base	Temp. (°C)	Time (h)	Yield ^b (%)
1	DMF	NaHCO ₃	120	18	36
2	Toluene	NaHCO ₃	110	18	8
3	Acetonitrile	NaHCO ₃	78	18	<5
4	Water	NaHCO ₃	100	18	72
5	Water	K ₂ CO ₃	100	18	67
6	Water	Cs ₂ CO ₃	100	18	22
7	Water	NaHCO ₃	60	18	39
8	Water	NaHCO ₃	rt	30	-
9	Water	NaHCO ₃	100	10	30
10	Water	NaHCO ₃	100	22	73

Table S4 Standardization of reaction conditions using Ag-Pd@rutin catalyst^a

^aCondition: Cinnamyl acetate (1 mmol), *p*-cresol (1 mmol), base (2 mmol), Ag-Pd@rutin (14.6 mg, 0.00027 mol% of Ag and 0.000027 mol% of Pd), solvent, temp., time; ^bYields refer to those of isolated products.

Section V

Comparison of the work:

The comparison between different palladium-catalyzed etherification reaction and this work

Table S5	Few reports of	n palladium	-catalyzed	etherification	reactions
	1	1	5		

Entry	Catalyst	Reaction Conditions	Yield (%)	Reusability of the catalyst	Reference
1	Pd(II)-PS-Ala	Cinnamyl acetate and <i>p</i> - cresol, water, K ₂ CO ₃ , 16 h, reflux	90	5	14
2	Fe ₃ O ₄ –dopamine–Pd	Cinnamyl acetate and <i>p</i> - cresol, water, NaHCO ₃ , 5h, reflux	85	5	15
3	Fe ₃ O ₄ @SiO ₂ Pd	Cinnamyl acetate and <i>p</i> - cresol, water, NaHCO ₃ , 6h, reflux	85	4	16
4	Pd(PPh ₃) ₄	Allylic acetate and aliphatic alcohol, THF, Et ₂ Zn, 25 °C, 2 to 6 h	70		17
5	$[Pd(\eta^{3}-C_{3}H_{5})Cl]_{2}$	1,3-diphenylpropenyl acetate, benzyl alcohol, CH ₃ CN, Cs ₂ CO ₃ , 10 °C, 24 h under argon atmosphere	98		18
6	polystyrene– poly(ethylene glycol) copolymer resin supported by Pd– imidazoindolephosphin e complex	Allylic ester, phenol, water, K ₂ CO ₃ , 25 °C, 12 h under N ₂ atmosphere	94	2	19
7	PdCl ₂	2-iodophenol, phenylboronic acid, methylene chloride, DMF, Cs ₂ CO ₃ , 100 °C, 12 h	74		20
8	Pd(CH ₃ CN) ₂ Cl ₂	1,3-diphenylallyl acetate, benzyl alcohol, CH ₃ CN, Cs ₂ CO ₃ , 20 °C, 4 h	86	3	21
9	Pd(dba) ₂	Sodium 4-methoxyphenolate, 1-bromo-2-methylbenzene, toluene, 80 °C, 12 h	85		22
10	$Pd(OAc)_2$	Allyl alcohol, <i>p</i> -cresol, benzene, PPh ₃ , 50 °C, 4 -20 h	91		23

11	$Pd(OAc)_2$	3-(2-bromo-phenyl)propan-1- ol, toluene, Ca2CO ₃ , 50 °C, 21 h	85		24
12	Pd@rutin	Cinnamyl acetate and <i>p</i> - cresol, water, K ₂ CO ₃ , 18 h, reflux	88	4	This work

Section VI

¹H and ¹³C NMR spectra of synthesized products

1-(cinnamyloxy)-4-methylbenzene (Table 8, 3a): ¹H NMR 300 MHz, CDCl₃ δ 7.34-6.31 (m, 11H), 4.60-4.58 (d, 2H), 2.21 (bs, 3H); ¹³C NMR 75 MHz, CDCl₃ δ 156.55, 130, 114.70, 77.08, 68.76, 20.89.

1-bromo-4-(cinnamyloxy)benzene (Table 8, 3b): ¹H NMR 300 MHz, CDCl₃ δ 7.34-7.16 (m, 7H), 6.79-6.61 (m, 3H), 6.35-6.26 (m, 1H), 4.60-4.58 (q, 2H); ¹³C NMR 75 MHz, CDCl₃ δ 157.69, 130, 116.58, 113.02, 77.10, 68.81.

(E)-1-bromo-4-((3-(p-tolyl)allyl)oxy)benzene (Table 8, 3c): ¹H NMR 300 MHz, CDCl₃ δ 7.32-6.23 (m, 10H), 4.59-4.57 (d, 2H), 2.27 (bs, 3H); ¹³C NMR 75 MHz, CDCl₃ δ 158.19, 136.42, 134.04, 132.63, 128.35, 127.85, 126.65, 124.19, 117.08, 113.45, 117.08, 113.45, 69.05, 20.59.

(E)-1-bromo-4-((3-(4-methoxyphenyl)allyl)oxy)-benzene (Table 8, 3d): ¹H NMR 300 MHz, CDCl₃ δ 7.27-6.17 (m, 10H), 4.55 (bs, 2H), 3.75 (bs, 3H); ¹³C NMR 75 MHz, CDCl₃ δ 158, 133, 128, 121.61, 116.66, 114.05, 76.8, 69.13, 55.29.

(E)-1-methoxy-4-(3-(p-tolyloxy)prop-1-en-1-yl)-benzene (Table 8, 3e): ¹H NMR 300 MHz, CDCl₃ δ 7.41-6.16 (m, 10H), 4.58-4.56 (d, 2H), 3.73 (bs, 3H), 2.20 (bs, 3H); ¹³C NMR 75 MHz, CDCl₃ δ 159.5, 129.82, 121, 114, 76.80, 68.92, 55.22, 20.19.

Fig. S5 ¹H and ¹³C-NMR spectra of 1-(cinnamyloxy)-4-methylbenzene (3a).

Fig. S6 ¹H and ¹³C-NMR spectra of 1-bromo-4-(cinnamyloxy)benzene (3b).

Fig. S7 ¹H and ¹³C-NMR spectrum of (E)-1-bromo-4-((3-(p-tolyl)allyl)oxy)benzene (3c).

Fig. S8 ¹H and ¹³C-NMR spectra of (E)-1-bromo-4-((3-(4-methoxyphenyl)allyl)oxy)-benzene (3d).

Fig. S9 ¹H and ¹³C-NMR spectra of (E)-1-methoxy-4-(3-(p-tolyloxy)prop-1-en-1-yl)-benzene (3e).

References:

- S. Pandey, G. K. Goswami, K. K. Nanda, Green synthesis of biopolymer–silver nanoparticle nanocomposite: An optical sensor for ammonia detection, *Int. J. Biol. Macromol.*, 2012, 51(4), 583-589.
- 2 H. Bar, D. Kr. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, A. Misra, Green synthesis of silver nanoparticles using latex of jatropha curcas, *Colloid. Surf. A: Physicochemical and Engineering Aspects*, 2009, **339**(1-3), 134-139.
- 3 J. Chen, J. Wang, X. Zhang, Y. Jin, Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate, *Mater. Chem. Phys.*, 2008, 108(2-3), 421-424.
- 4 T. J. I. Edison, M. G. Sethuraman, Instant green synthesis of silver nanoparticles using terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue, *Process Biochem.*, 2012, 47(9), 1351-1357.
- 5 P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Green synthesis of silver nanoparticles from leaf extract of mimusops elengi, linn. for enhanced antibacterial activity against multi drug resistant clinical isolates, *Colloid. Surf. B: Biointerfaces*, 2013, 108, 255-259.
- 6 J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, D. Wang, Green synthesis of silver nanoparticles–graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan, *Biosens. Bioelectron.*, 2013, 42, 198-206.
- 7 K. Shameli, M. B. Ahmad, W. Md. Z. W. Yunus, A. Rustaiyan, N. A. Ibrahim, M. Zargar, Y. Abdollahi, Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity, *Int. J. Nanomedicine*, 2010, 5, 875-887.
- 8 F. Jiang, R. Yue, Y. Du, J. Xu, P. Yang, A one-pot 'green'synthesis of Pd-decorated PEDOT nanospheres for nonenzymatic hydrogen peroxide sensing, *Biosens. Bioelectron.*, 2013, 44, 127-131.
- 9 T. Sun, Z. Zhang, J. Xiao, C. Chen, F. Xiao, S. Wang, Y. Liu, Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity, *Sci. Rep.*, 2013, 3, 1-6.

- 10 A. Hatamifard, M. Nasrollahzadeh, J. Lipkowski, Green synthesis of a natrolite zeolite/palladium nanocomposite and its application as a reusable catalyst for the reduction of organic dyes in a very short time, *RSC Adv.*, 2015, 5(111), 91372-91381.
- 11 M. Nasrollahzadeh, S. M. Sajadi, A. Rostami-Vartooni, M. Bagherzadeh, Green synthesis of Pd/CuO nanoparticles by theobroma cacao l. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free heck coupling reaction under aerobic conditions, *J. Colloid Interface Sci.*, 2015, 448, 106-113.
- 12 S. Momeni, I. Nabipour, A simple green synthesis of palladium nanoparticles with sargassum alga and their electrocatalytic activities towards hydrogen peroxide, *Appl. Biochem. Biotech.*, 2015, **176**(7), 1937-1949.
- 13 J. Sun, Y. Fu, G. He, X. Sun, X. Wang, Green Suzuki–Miyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride, *Appl. Catal. B: Environmental*, 2015, 165, 661-667.
- 14 M. Halder, M. M. Islam, S. Ahammed, S. M. Islam, Polymeric β-alanine incarcerated Pd (II) catalyzed allylic etherification in water: A mild and efficient method for the formation of C (Sp³)–O bonds, *RSC Adv.*, 2016, 6(10), 8282-8289.
- 15 A. Saha, J. Leazer, R. S. Varma, O-allylation of phenols with allylic acetates in aqueous media using a magnetically separable catalytic system, *Green Chem.*, 2012, **14**(1), 67-71.
- 16 R. B. N. Baig, R. S. Varma, Magnetic silica-supported palladium catalyst: Synthesis of allyl aryl ethers in water, *Ind. Eng. Chem. Res.*, 2014, **53**(49), 18625-18629.
- 17 H. Kin, C. Lee, A mild and efficient method for the streoselective formation of C-O bonds:
 Palladium-catalyzed allylic etherification using zinc(II) alkoxides, *Org. Lett.*, 2002, 4(24) 4369-4371.
- 18 J. Xing, P. Cao, J. Liao, Chiral CO/P hybrid ligands: An enantioselective switch in palladium-catalyzed asymmetric allylic etherifications, *Tetrahedron: Asymmetry*, 2012, 23(8) 527-535.
- 19 Y. Uozumi, M. Kimura, Asymmetric π-allylic etherification of cycloalkenyl esters with phenols in water using a resin-supported chiral palladium complex, *Tetrahedron: Asymmetry*, 2006, **17**(1) 161-166.

- 20 X. Chen, C. Hu, J-P. Wan, Y. Liu, Dichloromethane as methylene donor for the one-pot synthesis of bisaryloxy methanes via williamson etherification and suzuki coupling, *Tetrahedron Lett.*, 2016, 57(46) 5116-5119.
- 21 L. Dai, X. Li, H. Yuan, X. Li, Z. Li, D. Xu, F. Fei, Y. Liu, J. Zhang, Z. Zhou, Ionic-salttagged ferrocenyl diphosphine-imine ligands and their application to palladium-catalyzed asymmetric allylic etherification, *Tetradron: Asymmetry*, 2011, 22(13) 1379-1389.
- 22 G. Mann, C. Incarvito, A. L. Rheingold, J. F. Hartwig, Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers, J. Am. Chem. Soc., 1999, 121(13) 3224-3225.
- 23 T. Satoh, M. Ikeda, M. Miura, M. Nomura, Palladium-catalysed etherification of allyl alcohols using phenols in the presence of titanium(IV) isopropoxide, *J. Org. Chem.*, 1997, 62(14) 4877-4879.
- 24 S-i. Kuwabe, K. E. Torraca, S. L. Buchwald, Palladium-catalyzed intramolecular C-O bond formation, *J. Am. Chem. Soc.*, 2001, **123**(49) 12202-12206.