Electronic Supplementary Information

A new antiferromagnetic Dy_6 oxido-material as a multifunctional aqueous phase sensor for picric acid as well as Fe^{3+} ions

Mukul Raizada^{a,b*}, M. Shahid^{a*}, Sameer Hussain^c, Mo Ashafaq^a, Zafar A. Siddiqi^a

^{a.} Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.

^{b.} Current Address, Molecular Magnetism Lab, Department of Chemistry, IISER, Bhopal, India.

^c Department of Chemistry, Xi'an Jiaotong University, China, PR.

 $\texttt{+} Corresponding \ authors, E-mail: shahid \texttt{81} chem@gmail.com, mukulraizada \texttt{1}@gmail.com$

Formula for calculating the percentage of Picric acid fluorescence intensity quenching:

(Io-I)/Io x 100%

Where, *I*o = initial fluorescence intensity,

I = intensity of **1** containing PA solution.

Stern-Volmer equation:

$I_0/I = KSV[A] + 1$

Where, I_0 = fluorescent intensity of 1 before the addition of the analyte

I = fluorescent intensity after the addition of the respective analyte

 $K_{\rm SV} =$ Stern-Volmer constant

[A] = molar concentration of the analyte (M⁻¹).

Reference: (a) S. Pramanik, C. Zheng, X. Zhang, T. J. Emge and J. Li, J. Am. Chem. Soc.,

2011, 133, 4153; (b) D. Banerjee, Z. Hu and J. Li, Dalton Trans., 2014, 43, 10668.

Oxygen atoms	BVS	Assigned protonation levels
O1W	0.25	H ₂ O
O2W	0.30	H ₂ O
O3W	0.30	H ₂ O
O4W	0.30	H ₂ O
O5W	0.31	H ₂ O
O6W	0.28	H ₂ O
O2	1.20	OH-
O3	1.16	OH-
O4	1.18	OH-
O5	1.19	OH-
O1	1.57	O ²⁻

Table S1. Bond valence sum calculation of Oxygen (O) oxidation state in the crystal structure of **1**

Fig. S1: Emission spectrum of 1 dispersed in different solvents upon excitation at 296 nm.

Fig. S2: The change in fluorescence intensity of **1** upon incremental addition of NB solution in Water.

Fig. S3: The change in fluorescence intensity of **1** upon incremental addition of MNP solution in Water.

Fig. S4: The change in fluorescence intensity of **1** upon incremental addition of PNP solution in Water.

Fig. S5: The change in fluorescence intensity of **1** upon incremental addition of 2,4-DNP solution in Water.

Fig. S6: The change in fluorescence intensity of **1** upon incremental addition of PA solution in Water.

Fig. S7: (a) Solid and solution (water) state UV-Visible spectra of **1**. (b) UV-Visible spectra at different temperature.

Fig. S8: 3D representation of Stern-Volmer (SV) plots of 1 for various NACs.

Fig. S9: Fluorescence decay profile of 1 in the presence and absence of PA solution.

Fig. S10: UV-vis spectra of **1** upon gradual addition of PA showing spectral change with the appearance of new band at 352 nm.

Fig. S11: UV-vis spectra of 1 in the presence of different nitro analytes.

Fig. S12: The change in fluorescence intensity of 1 upon incremental addition of Catechol (a), 2,6 Bis(hydroxymethyl) p-cresol (b), di(trimethylolpropane) (c) and 1,1,1-Tris(hydroxymethyl)propane (d) (1mM) solution in Water.

Fig. S13: The change in fluorescence intensity of 1 upon addition of NB followed by PA.

Fig. S14: The change in fluorescence intensity of 1 upon addition of MNP followed by PA.

Fig. S15: The change in fluorescence intensity of 1 upon addition of PNP followed by PA.

Fig. S16: The change in fluorescence intensity of **1** upon addition of 2,4-DNP followed by PA.

Table S2: - HOMO	D and LUMO	energies calc	ulated for ni	itroanalytes at	B3LYP/6-3	31G*
level of theory.						

Analytes	HOMO (ev)	LUMO (eV)	Band gap (eV)	
NB	-7.752	-3.023	4.729	
PNP	-7.236	-2.722	4.514	
MNP	-7.029	-2.984	4.045	
2,4-DNP	-6.408	-3.014	3.394	
РА	-8.205	-4.384	3.821	

Fig. S17: Emission spectrum of **1** upon incremental addition of Cd²⁺(1mM) solution in Water.

Fig. S18: Emission spectrum of **1** upon incremental addition of Co²⁺(1mM) solution in Water.

Fig. S19: Emission spectrum of **1** upon incremental addition of Cr³⁺ (1mM) solution in Water.

Fig. S20: Emission spectrum of **1** upon incremental addition of Cu²⁺(1mM) solution in Water.

Fig. S21: Emission spectrum of 1 upon incremental addition of $Hg^{2+}(1mM)$ solution in Water.

Fig. S22: Emission spectrum of 1 upon incremental addition of Ni²⁺ (1mM) solution in Water.

Fig. S23: Emission spectrum of **1** upon incremental addition of Pb²⁺(1mM) solution in Water.

Fig. S24: Emission spectrum of 1 upon incremental addition of Fe³⁺ (1mM) solution in Water.

Fig. S25: The change in fluorescence intensity of **1** upon addition of Cd²⁺(a), Co²⁺(b), Cr³⁺(c) Cu²⁺(d), Hg²⁺(e), Ni²⁺(f) and Pb²⁺(g) solution followed by Fe³⁺ solution respectively.

Fig. S26: 3D representation of Stern-Volmer (SV) plots of 1 for different metal ions.

Fig. S27: Fluorescence decay profile of 1 in the presence and absence of Fe³⁺ ions.

Fig. S28: Spectral overlap between normalized emission spectra of 1 ($\lambda_{ex} = 296$ nm) and normalized absorbance spectra of the selected metal ions.

Fig. S29: XPS of Fe^{3+} shows the typical peak of Fe^{3+} at 710 eV.

Fig. S30: The quenching and recyclability test of **1**, the upper dots represent the initial luminescence intensity and the lower dots represent the intensity upon addition of (a) 5.49ppb of PA, (b) 27.9 ppb of Fe³⁺ solution.

Fig. S31: Linear region of fluorescence intensity of **1** in water upon addition of PA $(0.5 - 3 \mu L, 2 \text{ mM} \text{ stock solution})$ in water.

Fig. S32: Linear region of fluorescence intensity of **1** in water upon addition of Fe^{3+} (20 – 100 µL, 1 mM stock solution) in water.

Bond Length (1)			
Dy1-O2	2.332(7)	Dy3–O2	2.340(7)
Dy1-O3	2.337(8)	Dy3–O5	2.340(8)
Dy1–O4	2.344(7)	Dy3–O3	2.346(7)
Dy1–O5	2.346(8)	Dy3–O5W	2.431(9)
Dy1–O2W	2.443(11)	Dy3–O6W	2.466(9)
Dy1-O1	2.5062(5)	Dy3–O1	2.5034(5)
Dy106	2.508(9)	Dy3-O13	2.517(9)
Dy1-O1W	2.512(11)	Dy3012	2.568(9)
Dy1–O7	2.538(9)	N106	1.218(15)
Dy1-N1	2.934(10)	N1O8	1.245(14)
Dy2-O5	2.343(7)	N107	1.251(15)
Dy2-O2	2.353(8)	N2-011	1.220(12)
Dy2-O4	2.362(8)	N209	1.245(12)
Dy2-O3	2.372(7)	N2O10	1.279(12)
Dy2–O3W	2.436(11)	N3014	1.233(12)
Dy2-O4W	2.443(8)	N3-O13	1.238(13)
Dy2-O1	2.4799(5)	N3012	1.279(13)
Dy2-O10	2.503(8)	N4016	1.09(2)
Dy209	2.590(8)	N4015	1.27(3)
Dy3–O4	2.334(7)	N4017	1.306(18)
Bond angles (1)			· /
O2–Dy1–O3	79.5(3)	O3-Dy1-O6	80.6(3)
O2–Dy1–O4	129.9(3)	O4–Dy1–O6	73.1(3)
O3–Dy1–O4	80.3(3)	O5–Dy1–O6	133.4(3)
O2-Dy1-O5	80.6(3)	O2W-Dy1-O6	102.1(4)
O3–Dy1–O5	129.5(3)	O1–Dy1–O6	128.5(3)
O4–Dy1–O5	78.1(3)	O2–Dy1–O1W	78.9(3)
O2–Dy1–O2W	76.9(3)	O3-Dy1-O1W	73.4(4)
O3–Dy1–O2W	140.4(3)	O4–Dy1–O1W	136.2(4)
O4–Dy1–O2W	138.8(3)	O5–Dy1–O1W	145.2(4)
O5–Dy1–O2W	76.9(3)	O2W–Dy1–O1W	71.2(4)
O2–Dy1–O1	65.44(19)	O1–Dy1–O1W	128.7(3)
O3–Dy1–O1	65.09(17)	O6-Dy1-O1W	68.6(4)
O4–Dy1–O1	64.50(18)	O2–Dy1–O7	146.2(3)
O5–Dy1–O1	64.38(18)	O3–Dy1–O7	129.4(3)
O2W–Dy1–O1	128.9(3)	O4–Dy1–O7	78.2(3)
O2–Dy1–O6	145.5(3)	O5–Dy1–O7	89.5(3)
O2W–Dy1–O7	69.4(3)	O2-Dy1-N1	155.4(3)
01–Dy1–O7	137.5(3)	O3-Dy1-N1	104.7(3)
O6–Dy1–O7	49.4(3)	O4-Dy1-N1	74.4(3)
01W–Dv1–O7	92.1(4)	O5–Dv1–N1	112.4(3)

 Table S3. Selected bond lengths and angles for 1.

Calculation of standard deviation:

 Table S4: Standard deviation for 1.

Blank Readings (only probe)	FL Intensity of 1
Reading 1	813.44
Reading 2	821.57
Reading 3	817.23
Reading 4	821.95
Reading 5	814.87
Standard Deviation (σ)	3.44

Calculation of Detection Limit:

Table S5: Detection limit calculation of 1 for PA

Complex	Slope from Graph (m)	lope from Graph (m) Detection limit $(3\sigma/m)$	
		μΜ	ppb
1	91800	1.12E-04	~0.03

Table S6: Detection limit calculation of 1 for Fe^{3+}

Complex	Slope from Graph	Detection limit	
	(m)	(3σ/ <i>m</i>)	
		μM	ppb
1	6587.34	1.57E-03	~0.09

Table S7: Summary of Shape analysis of 1

EP-9	1	D9h	Enneagon
OPY-9	2	C8v	Octagonal pyramid
HBPY-9	3	D7h	Heptagonal bipyramid
JTC-9	4	C3v	Johnson triangular cupola J3
JCCU-9	5	C4v	Capped cube J8
CCU-9	6	C4v	Spherical-relaxed capped cube
JCSAPR-9	7	C4v	Capped square antiprism J10
CSAPR-9	8	C4v	Spherical capped square antiprism
JTCTPR-9	9	D3h	Tricapped trigonal prism J51

TCTPR-9	10	D3h	Spherical tricapped trigonal prism
JTDIC-9	11	C3v	Tridiminished icosahedron J63

Comple	[ML ₉	EP-9	OPY-	HBPY	JTC-9	JCCU	CCU	JCSAPR	CSAPR	JTCTPR	TCTPR	JTDIC
x	1		9	-9		-9	-9	-9	-9	-9	-9	-9
1		34.00	21.60	18.952	14.41	9.789	9.42	1.537	1.097	2.762	2.099	14.487
		5	1		9		2					
		5	1		ĺ .		-					

Quantum Yields: Fluorescence quantum yields from fluorescence emission spectra of the complexes in water were calculated with quinine sulphate ($\varphi = 0.54$) and Refractive Index: water = 1.33 as standard by using following equation:

 $\frac{\varphi Complex}{\varphi Q.S.} = \frac{Area of the complex}{Area of Q.S.} X \frac{Absorbance of Q.S.}{Absorbance of Complex} X \frac{(R.I. of solvent)^2}{(R.I. of Water)^2}$

 Φ = Quantum Yield; R.I. = Refractive Index, Q.S. = Quinoline sulphate