## Supporting Information

## A multifunctional polyimide nanofiber separator with a selfclosing polyamide-polyvinyl alcohol top layer of Turing structure for high-performance lithium-sulfur batteries

Xiang Luo,<sup>a,b,1</sup> Xianbo Lu,<sup>c,1</sup> Ya Chen,<sup>e,1</sup> Xiaodong Chen,<sup>a,b,d,\*</sup> Hele Guo,<sup>a</sup> Chunyu

Song,<sup>a</sup> Nannan Wang,<sup>a,\*</sup> Dawei Su,<sup>b</sup> Guoxiu Wang,<sup>b</sup> and Lifeng Cui<sup>a,\*</sup>

<sup>a</sup> School of Materials Science and Engineering, Dongguan University of Technology,

Dongguan 523808, Guangdong, China

<sup>b</sup> Center for Clean Energy Technology, School of Mathematical and Physical Science,

Faculty of Science, University of Technology Sydney, NSW 2007, Australia

<sup>c</sup> R&D Center, Shanghai Kingfa Sci. & Tech. Co., Ltd., Shanghai 201714, China

<sup>d</sup> Department of Applied Chemistry, School of Science, Xi'an Jiaotong University,

Xi'an 710049, Shaanxi, China

<sup>e</sup> School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China

<sup>1</sup>These authors contributed equally to this work.

\*Corresponding authors.

*E-mail addresses:* <u>chenxd@dgut.edu.cn</u> (X. Chen); <u>wangnn@dgut.edu.cn</u> (N. Wang); <u>lcui@dgut.edu.cn</u> (L. Cui).



Figure S1. Surface zeta potentials of different separators.



Figure S2. FTIR spectra of different separators.



Figure S3. SEM image of the Celgard separator.



Figure S4. SEM images of cross-section of PI/PA-PVA separator: (a) fresh prepared,

(b) after heating at 230 °C.



Figure S5. Photographs showing the polysulfide diffusion across the Celgard (a) and

PI/PA-PVA (b) separators for different time, respectively.



Figure S $\underline{6}$ . (a) Chronoamperometry profile of the PI/PA separator and (b) the corresponding impedances under the initial and steady-state current conditions.



**Figure S7.** Open circuit voltage profiles showing the self-discharge behavior of Li-S batteries with PI, PI/PA-PVA and Celgard separators.



**Figure S8.** (a-b) CV curves of Li-S batteries with PI and Celgard separators at a scanning rate of 0.1 mV s<sup>-1</sup>, (b-d) CV curves of Li-S batteries with PI and Celgard separators under different scanning rates and (e-f) the corresponding linear fits of the peak currents.



Figure S<sub>2</sub>. Lithium ion diffusion coefficients for different separators



**Figure S<u>10</u>**. Discharge-charge profiles of Li-S batteries with the PI/PA separator at different rates.



**Figure S<u>11</u>.** Elemental mappings of sulfur on the cathode faced with (a) Celgard and (b) PI/PA-PVA separators after rate test.



Figure S12. SEM image of the pristine lithium anode.



Figure S13. Photograph of the synthesized PAA in NMP solution (15%).

| Mombrono  | Thickness (µm) | Donosity (9/)  | Contact angle (°)    | Electrolyte uptake (%) | Electrolyte   |
|-----------|----------------|----------------|----------------------|------------------------|---------------|
|           |                | r 010sity (78) | (%) Contact angle () |                        | retention (%) |
| PI        | $30 \pm 0.5$   | 92.1 ± 0.5     | 0                    | 2011                   | 70.2          |
| PI/PA     | $30 \pm 0.5$   | $76.6\pm0.5$   | 35.8                 | 1321                   | 41.1          |
| PI/PA-PVA | $30 \pm 0.5$   | $75.1\pm0.5$   | 0                    | 1640                   | 52.6          |
| Celgard   | 25 ± 0.5       | $41.3 \pm 0.5$ | 49.2                 | 156                    | 11.5          |

 Table S1. Physical properties of different separators.

|                               | Sulfur |                              | Rate                        | Fading rate per cycle (%) |           |
|-------------------------------|--------|------------------------------|-----------------------------|---------------------------|-----------|
|                               | (%)    | Initial capacity             | capability                  |                           |           |
| Separator                     |        | [mA h g <sup>-1</sup> ]      | [mA h g <sup>-1</sup> ]     |                           | Refs      |
|                               |        | (Current rate)               | (Cycling                    |                           |           |
|                               |        |                              | rate)                       |                           |           |
| CNT/PP <sup>a</sup>           | 60     | 1179(0.1 C)                  | 430 (2 C)                   | 0.4 (100 cycles, 0.1C)    | 1         |
| Black phosphorus/Celgard      | 80     | 930 (0.4 A g <sup>-1</sup> ) | 623(3.5 A g <sup>-1</sup> ) | 0.14 (100 cycles, 0.1 C)  | 2         |
| AC/GF <sup>b</sup>            | 70     | 1324 (0.2 C)                 | 362 (1.5 C)                 | 0.8 (50 cycles, 0.2 C)    | 3         |
| PAA-SWNT/Celgard <sup>c</sup> | 65     | 1130(0.1 C)                  | 592 (2 C)                   | 0.13 (100 cycles, 0.2 C)  | 4         |
| TiN/Celgard                   | 60     | 1061 (0.5 C)                 | 329 (2 C)                   | 0.15 (250 cycles, 0.5 C)  | 5         |
| MEC-AA <sup>d</sup>           | 70     | 915 (0.5 C)                  | 720 (1 C)                   | 0.2 (150 cycles, 0.5 C)   | 6         |
| KB@Ir/Celgard <sup>e</sup>    | 75     | 1600 (0.1 C)                 | 653 (2 C)                   | 0.25 (100 cycles, 0.2C)   | 7         |
| MoS <sub>2</sub> /Celgard     | 65     | 1471 (0.1 C)                 | 550(1 C)                    | 0.08 (600 cycles, 0.5C)   | 8         |
| SiO <sub>2</sub> /PP          | 60     | 937 (0.2 C)                  | 621 (1 C)                   | 0.23 (200 cycles, 0.2 C)  | 9         |
| PI/PA-PVA                     | 70     | 1499 (0.1 C)                 | 497 (5 C)                   | 0.1 (500 cycles, 0.2 C)   | This work |

**Table S2.** Electrochemical performance comparison of this work with the previous

 reports involving different separators using carbon-sulfur cathodes in Li-S batteries.

<sup>a</sup> PP: Polypropylene

<sup>b</sup> AC/GF: Biomass-derived porous carbon / glass fiber

<sup>c</sup> PAA-SWNT/Celgard: Poly(acrylic acid) coated single-walled carbon nanotube film on Celgard.

<sup>d</sup> MEC-AA: MCM-41/ carbon nanotubes wrapped poly-(ether imide) nanofibers

<sup>e</sup>KB@Ir/Celgard: Ketchen Black and Ir nanoparticle modified Celgard

| Samples   | Monomer concentration |                              |                             |  |  |  |
|-----------|-----------------------|------------------------------|-----------------------------|--|--|--|
| Sumples   | TMC (mM)              | PZ (mM)                      | PVA (mM)                    |  |  |  |
| PI        | 60                    | 1179(0.1 C)                  | 430 (2 C)                   |  |  |  |
| PI/PA     | 80                    | 930 (0.4 A g <sup>-1</sup> ) | 623(3.5 A g <sup>-1</sup> ) |  |  |  |
| PI/PA-PVA | 70                    | 1499 (0.1 C)                 | 497 (5 C)                   |  |  |  |

**Table S3.** Specific conditions of the interfacial polymerization for different samples.

## References

- 1. B. Liu, X. M. Wu, S. Wang, Z. Tang, Q. L. Yang, G. H. Hu and C. X. Xiong, *Nanomater.*, 2017, 7, 196.
- J. Sun, Y. M. Sun, M. Pasta, G. M. Zhou, Y. Z. Li, W. Liu, F. Xiong and Y. Cui, *Adv. Mater.*, 2016, 28, 9797-9803.
- R. K. Selvan, P. Zhu, C. Yan, J. D. Zhu, M. Dirican, A. Shanmugavani, Y. S. Lee and X. W. Zhang, J. Colloid Interface Sci., 2018, 513, 231-239.
- J. H. Kim, J. Seo, J. Choi, D. Shin, M. Carter, Y. Jeon, C. W. Wang, L. B. Hu and U. Paik, ACS Appl. Mater. Interfaces, 2016, 8, 20092-20099.
- 5. X. He, Y. Shuai, L. Na, K. H. Chen, Y. Q. Zhang, Z. P. Zhang and F. Y. Gan, *Mater. Lett.*, 2018, **215**, 91-94.
- J. H. Kim, G. Y. Jung, Y. H. Lee, J. H. Kim, S. Y. Lee, S. K. Kwak and S. Y. Lee, *Nano Lett.*, 2017, 17, 2220-2228.
- P. J. Zuo, J. F. Hua, M. X. He, H. Zhang, Z. Y. Qian, Y. L. Ma, C. Y. Du, X. Q. Cheng, Y. Z. Gao and G. P. Yin, *J. Mater. Chem. A*, 2017, 5, 10936-10945.
- Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. X. Wang, H. Sin, L. S. Li and Z. Y. Tang, *Adv. Mater.*, 2017, 29, 1606817.
- J. Li, Y. D. Huang, S. Zhang, W. Jia, X. C. Wang, Y. Guo, D. Z. Jia and L. S. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 7499-7504.