Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

## **Supporting Information**

## Silsesquioxane-based and Triptycene-linked Nanoporous Polymers (STNPs) with High Surface Area for CO<sub>2</sub> Uptake and Efficient Dye Removal Applications

Akhtar Alam, Atikur Hassan, Ranajit Bera and Neeladri Das\*

Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India

E-mail: neeladri@iitp.ac.in, neeladri2002@yahoo.co.in; Tel.: +91 9631624708



STNP2 BET Plot STNP1 BET Plot 0.6 -0.5 - $SA_{BET} = 1421 \text{ m}^2/\text{g}$  $R^2 = 0.999$  $SA_{BET} = 1256 \text{ m}^2/\text{g}$ 0.5  $R^2 = 0.999$ 0.4 [(**I-(d)<sup>0</sup>d))//I**/I 1/[W((P<sub>0</sub>/P)-1)] 0.4 0.3 0.2 0.2 0.1 0.1 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 P/P₀ P/P₀ STNP4 BET Plot 0.50 STNP3 0.6 **BET Plot** 0.45  $SA_{BET} = 1271 \text{ m}^2/\text{g}$ 0.5 -  $R^2 = 0.999$  $SA_{BET} = 1462 \text{ m}^2/\text{g}$  $R^2 = 0.999$ 0.40 0.35 (**I-(d/d))** 0.25 (**I-(d/<sup>0</sup>d)))//I/I** 0.20 0.2 0.15 0.1 0.10 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 P/P。 P/P₀

Figure S1. FESEM image of STNP1, STNP2 and STNP4

Figure S2. BET plot of STNPs



Figure S3. Langmuir plot of STNPs



Figure S4.  $Q_{st}$  for CO<sub>2</sub> capture by STNP3



Figure S5. Initial gas uptake slopes of STNP3



Figure S6. Linear fitting of the equilibrium data by using the Freundlich equation

| Table S1 Physical and chemi | ical properties | of dyes |
|-----------------------------|-----------------|---------|
|-----------------------------|-----------------|---------|

| Dyes | Molecular structure | Molecular size | Molecular      | Nature    | Absorption |
|------|---------------------|----------------|----------------|-----------|------------|
|      |                     | (nm)           | weight         | (anionic/ | wavelength |
|      |                     |                | $(g mol^{-1})$ | cationic) | (nm)       |
| CR   |                     | 2.62*0.74*0.43 | 696            | anionic   | 497        |
|      |                     |                |                |           |            |

| CV | N    | 1.41*1.21*0.18 | 407 | cationic | 584 |
|----|------|----------------|-----|----------|-----|
|    |      |                |     |          |     |
|    |      |                |     |          |     |
| MB |      | 1.26*0.77*0.65 | 320 | cationic | 665 |
| МО |      | 1.31*0.55*0.18 | 327 | anionic  | 464 |
| RB | СООН | 1.59*1.18*0.56 | 478 | cationic | 554 |
|    |      |                |     |          |     |

Table S2. Comparison of adsorbents of removal of CV and RB

| Adsorbate | Adsorbent                                                       | Adsorption<br>capacity<br>(mg g-1) | Reference |
|-----------|-----------------------------------------------------------------|------------------------------------|-----------|
| CV        | Magnetic nanocomposite                                          | 112                                | 1         |
|           | ZSM-5 zeolite                                                   | 142                                | 2         |
|           | multiwalled carbon nanotubes<br>(MWCNTs)                        | 228                                | 3         |
|           | silsesquioxane-based<br>tetraphenylethene-linked polymers       | 862                                | 4         |
|           | ferrocene-functionalized<br>silsesquioxane-based polymer        | 1083                               | 5         |
|           | STNP3                                                           | 1428                               | This work |
| RB        | Magnetic mesoporoussilica                                       | 105                                | 6         |
|           | Fe3O4@POSS-SH                                                   | 142                                | 7         |
|           | fluorine-containing silsesquioxane-<br>based hybrid polymers    | 416                                | 8         |
|           | porous organic copolymer based on<br>triptycene and crown ether | 422                                | 9         |

| MPSC/C                                          | 785  | 10        |
|-------------------------------------------------|------|-----------|
| hybrid phosphorus-containing<br>porous polymers | 828  | 11        |
| STNP3                                           | 1000 | This work |

## References

- 1. K. P. Singh, S. Gupta, A. K. Singh and S. Sinha, J. Hazard. Mater., 2011, 186, 1462-1473.
- 2. G. V. Brião, S. L. Jahn, E. L. Foletto and G. L. Dotto, *J. Colloid Interface Sci.*, 2017, **508**, 313-322.
- 3. W. Liu, X. Jiang and X. Chen, J. Solid State Chem., 2015, 229, 342-349.
- 4. H. Liu and H. Liu, J. Mater. Chem. A, 2017, 5, 9156-9162.
- 5. X. Yang and H. Liu, Chem. Eur. J., 2018, 24, 13504-13511.
- 6. S. Tao, Z. Zhu, C. Meng and C. Wang, *Microporous Mesoporous Mater.*, 2013, 171, 94-102.
- 7. H.-B. He, B. Li, J.-P. Dong, Y.-Y. Lei, T.-L. Wang, Q.-W. Yu, Y.-Q. Feng and Y.-B. Sun, *ACS Appl. Mater. Interfaces*, 2013, **5**, 8058-8066.
- 8. M. Ge and H. Liu, *Chem. Eur. J.*, 2018, **24**, 2224-2231.
- 9. T. Xu, Y. He, Y. Qin, C. Zhao, C. Peng, J. Hu and H. Liu, *RSC Adv.*, 2018, **8**, 4963-4968.
- 10. X. Zhuang, Y. Wan, C. Feng, Y. Shen and D. Zhao, *Chem. Mater.*, 2009, **21**, 706-716.
- 11. R. Shen and H. Liu, *RSC Adv.*, 2016, **6**, 37731-37739.