Electronic supporting information for

Efficient electrochemical water splitting using copper molybdenum sulfide anchored Ni

foam as high-performance bifunctional catalyst

Aparna Sajeev¹, Vimal Kumar Mariappan¹, Dhanasekar Kesavan¹, Karthikeyan

Krishnamoorthy¹, and Sang-Jae Kim^{1,2*}

¹Nanomaterials & System Laboratory, Major of Mechatronics Engineering,

Faculty of Applied Energy System, Jeju National University, Jeju 63243, Republic of Korea.

² Department of Advanced Convergence Science & Technology, Jeju National University,

Jeju-63243, South Korea.

*Corresponding Email id.: <u>kimsangj@jejunu.ac.kr</u>

Figure S1. XPS core level spectrum of spectrum of Ni 2p in CMS/Ni foam

Figure S2. Linear sweep voltammogram analysis of CMS/Ni foam for initial and after durability test of Electrochemical HER activity

Figure S3. Linear sweep voltammogram analysis of CMS/Ni foam for initial and after durability test of Electrochemical OER activity

Figure S4. Electrochemical impedance analysis: Nyquist plot of CMS/Ni electrocatalyst.

Figure S5 (A) Cyclic voltammograms for CMS/Ni electrocatalyst at various scan rate. (B) The plot of scan rate vs current density of CMS /Ni electrocatalyst in 1 M KOH electrolyte.

Figure S6. (A) X-ray diffraction pattern of CMS/Ni nanostructures before and long-term stability tests, (B-D) Field emission scanning electron micrographs, (E) EDX spectrum, (F-L) elemental maps of CMS/Ni electrode after long-term electrochemical stability.

Table S1. Comparison of recently reported HER electrocatalysts performance with the as synthesized CMS/Ni foam electrocatalyst in electrolyte of 1 M KOH

Catalyst	Substrate	Electrolyte	Current density (mA cm ⁻²)	Overpotential (mV)	Reference
NiCo ₂ S ₄ NW/NF	NF	1 M KOH	10	210	1
CoS _x /Ni ₃ S ₂ @NF	NF	1 M KOH	10	240	2
CoS _x /Ni ₃ S ₂ @NF	NF	1 M KOH	10	204	3
Ni ₃ S ₂ nanosheet arrays	NF	1 M KOH	10	223	4
CoS-CC	CC	1 M KOH 0.5 M H ₂ SO ₄	10	192 212	5
Nickel cobalt sulfide	CFC	1 M KOH	10	282	6
Co ₉ S ₈ HNSs	Carbon paper	1 M KOH	10	267	7
Co ₃ S ₄ HNSs	Carbon paper	1 M KOH	10	221	7
Ni-Co-S	FTO	1 M K ₂ HPO ₄	10	280	8
Co@Co ₃ O ₄ -NC	GCE	1 M KOH	10	221	9
NiS2 HMSs	GCE	1 M KOH	10	219	7
Cu ₂ MoS ₄ /MWCNT	GCE	0.5 M H ₂ SO ₄	10	247	10
Pt/C	GCE	1 M KOH	10	32	1
Copper Molybdenum Sulphide	Ni Foam	1 М КОН	50	213	This work

Catalyst	Substrate	Electrolyte	Current density (mA cm ⁻²)	Overpotential (mV)	Reference
Ni ₃ S ₄ (NiS/NF)	Ni foam		20	320	11
NiS-10		I M KOH	20	344	11
Mo-Ni-Se@NF	NF	1 M KOH	100	397	12
NiMoN-400 NRs Co-NiMoN- 400 NRs	NF	1 M KOH	10	326 282	13
Cu _{1-x} Ni _x S/NF	NF	1 M KOH	20	350	14
FeS	NF	1 M KOH	50	430	15
CoS	NF	1 M KOH	50	530	15
NiS	NF	1 M KOH	50	530	15
CuS	NF	1 M KOH	50	510	15
Cu ₂ S-Ni ₃ S ₂ /NF	NF		10	329	16
Ni ₃ S ₂ films on NF	NF	1 M KOH	10	312	4
Co ₉ S ₈ HNSs	Carbon paper	1 M KOH	10	342	7
MoS2@CoO	CC	1 M KOH	10	325	17
Co ₉ S ₈ @MoS ₂	GC	1 M KOH	10	340	18
NiCoS-3 polyhedron	GC	1 M KOH	10	320	19
Co@Co ₃ O ₄ - NC	GC	1 M KOH	10	391	9
IrO2	GCE	1 M KOH	10	340	1
Copper Molybdenum Sulphide	Ni Foam	1 М КОН	50	350	This work

Table S2. Comparison of recently reported OER electrocatalysts performance with the as synthesized CMS/Ni foam electrocatalyst in electrolyte of 1 M KOH

Table S3. Comparison of recently reported bifunctional electrocatalysts performance with the as synthesized CMS/Ni foam electrocatalyst in electrolyte of 1 M KOH

Catalyst	Electrolyte	Current density (mA cm ⁻²)	Voltage (V)	Reference
NiS/NF	1 M KOH	10	1.61	11
NiCo ₂ S ₄ NW/NF	1 M KOH	10	1.63	1
Co ₃ S ₄ -L		10	1.63	20
Cu _{1-x} Ni _x S/NF	1 M KOH	10	1.64	14
NiS/Ni foam		10	1.64	21
CoNi ₂ S ₄ /Ni ₃ S ₂ @NF	1 M KOH	10	1.65	22
C_2M_1S	1 M KOH	10	1.668	23
NiCo-LDH/NF		10	1.66	24
Co ₉ S ₈ @MoS ₂	1 M KOH	10	1.67	18
Ni3S ₂ films on NF	1 M KOH	10	1.68	25
CoS _x /Ni ₃ S ₂ @NF	1 M KOH	50	1.69	2
CNT@NiSe/SS	1 M KOH	10	1.71	26
Ni_3S_2/NF	1 M KOH	13	1.76	4
Cu ₂ S-Ni ₃ S ₂ /NF	1 M KOH	10	1.77	16
Co@Co ₃ O ₄ -NC	1 M KOH	10	2.004	9
Copper Molybdenum Sulphide	1 М КОН	10	1.62	This work

References

- A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, 26, 4661–4672.
- 2 S. Song, Y. Wang, W. Li, P. Tian, S. Zhou, H. Gao, X. Tian and J. Zang, J. Alloys Compd., 2020, 154299.
- 3 S. Shit, S. Chhetri, W. Jang, N. C. Murmu, H. Koo, P. Samanta and T. Kuila, *ACS Appl. Mater. Interfaces*, 2018, **10**, 27712–27722.
- L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am.
 Chem. Soc., 2015, 137, 14023–14026.
- 5 N. Li, X. Liu, G. Li, Y. Wu and R. Gao, Int. J. Hydrogen Energy, 2017, 1–8.
- J. Tie, J. Han, G. Diao, J. Liu, Z. Xie and G. Cheng, *Appl. Surf. Sci.*, 2018, 435, 187–194.
- X. Ma, W. Zhang, Y. Deng, C. Zhong, W. Hu and X. Han, *Nanoscale*, 2018, 10, 4816–4824.
- 8 A. Irshad and N. Munichandraiah, ACS Appl. Mater. Interfaces, 2017, 9, 19746–19755.
- 9 X. Qiao, J. Jin, H. Fan, Y. Li and S. Liao, J. Mater. Chem. A, 2017, 5, 12354–12360.
- 10 J. Zhou, G. Xu, Z. Zhang and H. Wang, New J. Chem., 2019, 43, 9574–9582.
- 11 J. Ren and Z. Yuan, ACS Sustain. Chem. Eng., 2017, 5, 7203–7210.
- 12 H. Yang, Y. Huang, W. Y. Teoh, L. Jiang, W. Chen, L. Zhang and J. Yan, *Electrochim. Acta*, 2020, 136336.
- 13 Z. Yin, Y. Sun, Y. Jiang, F. Yan, C. Zhu and Y. Chen, 1–23.
- 14 Y. Li, H. Su, J. Fu and X. Du, Int. J. Hydrogen Energy, 2019, 44, 11744–11753.
- 15 A. Shankar, R. Elakkiya and G. Maduraiveeran, New J. Chem., 2020, 44, 5071–5078.
- 16 K. S. Bhat and H. S. Nagaraja, *ChemistrySelect*, 2020, 5, 2455–2464.

- P. Cheng, C. Yuan, Q. Zhou, X. Hu, J. Li, X. Lin, X. Wang, M. Jin, L. Shui, X. Gao, R.
 Nötzel, G. Zhou, Z. Zhang and J. Liu, *J. Phys. Chem. C*, 2019, **123**, 5833–5839.
- J. Bai, T. Meng, D. Guo, S. Wang, B. Mao and M. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 1678–1689.
- Z. Yu, Y. Bai, S. Zhang, Y. Liu and N. Zhang, *Int. J. Hydrogen Energy*, 2018, 43, 8815–8823.
- 20 M. Zhu, Z. Zhang, H. Zhang, H. Zhang, X. Zhang, L. Zhang and S. Wang, J. Colloid Interface Sci., DOI:10.1016/j.jcis.2017.09.076.
- 21 W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang and J. Wang, DOI:10.1039/b000000x.
- 22 W. Dai, K. Ren, Y. Zhu, Y. Pan, J. Yu and T. Lu, J. Alloys Compd., 2020, 844, 156252.
- 23 S. Shit, S. Chhetri, S. Bolar, N. C. Murmu, W. Jang, H. Koo and T. Kuila, *ChemElectroChem*, 2019, 6, 430–438.
- 24 W. Liu, J. Bao, M. Guan, Y. Zhao, J. Lian, J. Qiu, L. Xu, Y. Huang, J. Qian and H. Li, *Dalt. Trans.*, 2017, 46, 8372–8376.
- G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu and J. Zhang, *Nanoscale*, 2018, 10, 17347–17353.
- 26 T. Chen, B. Vedhanarayanan, S. Lin, L. Shao, Z. Sofer, J. Lin and T. Lin, J. Colloid Interface Sci., DOI:10.1016/j.jcis.2020.04.034.