— Supplementary Information —

Adsorption Properties of Acetylene, Ethylene and Ethane in UiO-66 with Linker Defects and NO₂ Functionalization

H. Pandey,^{1,2} T. Barrett,^{2,3} M. D. Gross,^{2,4} and T. Thonhauser^{1,2}

¹Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

²Center for Functional Materials, Wake Forest University, Winston-Salem, NC 27109, USA.

³Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA.

⁴Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA.

I. ADDITIONAL FIGURES AND TABLES

FIG. S1. Powder X-ray diffraction patterns were collected with a Bruker D2 Phaser X-ray diffractometer using CuK α radiation. The 2θ value range was 5° to 45°, the 2θ increment was 0.01°, the time step was 0.1 s, and the stage was rotated at 1 revolution per minute. The results confirm the formation of the crystalline UiO-66 phase as reported in the literature.¹

FIG. S2. A Perkin Elmer 100 FTIR spectrometer was used to probe the bond vibrations of UiO-66 and UiO-66–NO₂. Powders of each sample were directly placed on the IR holder and pressed with a built-in press. The IR spectrum was acquired between 650 and 4000 cm⁻¹. Both results match previously reported IR spectra¹ and confirm the presence of NO₂ in UiO-66–NO₂.

FIG. S3. Thermogravimetric analysis (SDT Q600, TA Instruments) was used to investigate the number of missing linker defects in UiO-66 and UiO-66–NO₂. Samples were heated from ambient temperature to 160 °C at a ramp rate of 10 °C/min, held at 160 °C for 12 h, heated to 600 °C at a ramp rate of 2 °C/min, and then heated to 800 °C at a ramp rate of 10 °C/min. The hold at 160 °C was used to activate the sample prior to decomposition. The final weight was assumed to be ZrO₂, which was confirmed by X-ray diffraction. The number of missing linker defects was calculated using the activated weight and final weight.

FIG. S4. $\rm C_2H_2,\,C_2H_4$ and $\rm C_2H_6$ isotherms for UiO-66 and UiO-66–NO_2 at 195 K and 293 K.

FIG. S5. Isosteric heats of adsorption of C_2H_2 , C_2H_4 and C_2H_6 in UiO-66(Zr) at 195 K and 293 K, obtained by calorimetry measurements.

FIG. S6. Isosteric heats of adsorption of $\rm C_2H_2,~C_2H_4$ and $\rm C_2H_6$ in UiO-66(Zr)–NO_2 at 195 K and 293 K, obtained by calorimetry measurements.

TABLE S1. Experimentally determined average number of linkers per unit cell and BET specific surface area for UiO-66(Zr) and UiO-66(Zr)–NO₂. Theoretical BET specific surface areas as a function of linkers per unit cell are shown for comparison.²

		linkers per	BET surface area
		unit cell	$(m^2 \cdot g^{-1})$
UiO-66	experiment	4.61	1292
	theory	4	800
		6	1550
UiO-66–NO ₂	experiment	5.20	831
	theory	4	500
		6	1100

- ¹ M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Ols-bye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino, and K. P. Lillerud, Chem. Mater. **22**, 6632 (2010).
 ² M. J. Katz, Z. J. Brown, Y. J. Colón, P. W. Siu, K. A.

Scheidt, R. Q. Snurr, J. T. Hupp, and O. K. Farha, Chem. Commun. 49, 9449 (2013).