Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Material

Enhancement on electromagnetic interference shielding from synergism between

Cu@Ni nanorods and carbon materials in flexible composite films

Ruosong Li^{1*}, Shuai Wang², Peiwei Bai², Bingbing Fan³, Biao Zhao^{2, 3*}, Rui Zhang^{2, 3}

- 1 School of Chemical Engineering, Northwest University, Xi'an, Shaanxi, 710069, China;
- 2 Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Mechatronics Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan, 450046, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan
 450001, PR China

* Corresponding Authors

Dr. Ruosong Li,

E-mail: ruosongli@nwu.edu.cn

Dr. Biao Zhao

E-mail: biao_zhao@zua.edu.cn

Cu@Ni content in composite film (wt%)	0.6	1.2	2	4	6	8
PVDF (g)	8.54	8.48	8.60	8.20	8.00	7.80
Cu@Ni (g)	0.06	0.12	0.20	0.40	0.60	0.80

Table S1. The amount of the dissolved PVDF and Cu@Ni in DMF

(a)

Fig. S1. (a) XRD patterns (b-c) and SEM images of the Cu@Ni rods.

Fig. S2. SE_A (solid) and SE_R (hollow) of the composite films at the frequency from 18 GHz to 26 GHz;

Filler type	Filler	Matrix	Filler	SE (dB)	t (mm)	Ref.
Carbon-	CNT/graphene/Cu@Ni	PVDF	6 w _t % CNT/8 w _t % graphene/8 w _t % Cu@Ni	47.6	0.3	This work
based	rGO/δ-Fe ₂ O ₃	PVA	$40 w_t \%$	20.3	0.36	[1]
filler/metal	rGO/CF/γ-Fe ₂ O ₃	Resin	$50 w_t \%$	41.8	0.4	[2]
	rGO/Fe ₃ O ₄	PVA	$35 w_t \%$	15	0.36	[3]
	Ag/carbon filler	Epoxy	$4.5 w_t^{0}$ %	38	2.5	[4]
CNT	CNT	PVDF	$5 w_t \%$	35.4	0.4	[5]
	MWCNT	PMMA	$40 w_t \%$	27	0.165	[6]
	SWCNT	EDOT	$15 w_t \%$	58	2.8	[7]
	CNT	WPU	76.2 w_t %	50	2	[8]
	Cellulose/MXCNT	Cellulose	$15 w_t \%$	35	0.15	[9]
	CNT	РР	$7.5 w_t \%$	22.3	0.34	[10]
Graphene	Graphene	PI	$16 w_t$ % graphene	21	0.8	[11]
	Graphene/CNT	PVDF	$5 w_t$ %CNT 10 w_t % graphene	36.5	0.25	[5]
Graphite	Graphite	SEBS	$15 w_t \%$	20	5	[12]
	Graphite	PA66	$25 w_t \%$	12	3.2	[13]
	Graphite	Epoxy	$2 w_t \%$	11	2	[14]
	Graphite	PE	$18.7 w_t\%$	33	3	[15]
Metals	Ag Nanowires	PS	$2.5 w_t \%$	33	0.8	[16]
	Cu Nanowires	PS	$2.1 w_t \%$	35	0.2	[17]
	Ni-Co Fiber	WAX	$30 w_t \%$	41.2	2.5	[18]
	Ni	PVDF	$40 w_t \%$	23	1.95	[19]

Table S2. EMI Shielding Performance of Polymer Composites

Polymer	Conductive filler	t	SE	SE/t	Ref.	
matrix	Conductive Inter	(mm)	(dB)	$(dB \cdot mm^{-1})$		
	6 wt% CNT/8 wt% graphene/8 wt% Cu@Ni	0.3	47.6	158.8	This study	
	5 wt% Fe ₃ O ₄ /8 wt% graphene	1.1	35.6	32.4	[20]	
	10 wt% Ni chain	2	21	10.5	[21]	
	1 wt% CNT/6 wt% Ni chain		57.3	95.5	[22]	
	5 wt% graphene nanoplatelets/8 wt% Ni chain	0.6	55.8	93	[22]	
	5 wt% Fe ₃ O ₄ / wt% 8 CNT 6 wt% CNT/6 wt% Co chain		32.7	29.7	[23]	
			35.3	117.6	[24]	
PVDF	3 wt% CNT/2.2 vol % Co nanowires	1	35	35	[25]	
	50 wt% bulk $Ti_3C_2T_x$	1	34.4 9	34.49	[26]	
	10 wt% MWCNT/12 wt% Ni@CNT	0.5	46.6	93.2	[27]	
	50 vol% carbonyl iron powder	1.2	20	16.7	[28]	
	2.7 vol.% MWCNT/22 vol.% ethylene-a-octene block copolymer	2.0	34	17	[29]	
	1 wt% IL-MWCNT + 2 vol% BT–GO	5.0	26	5.2	[30]	
	5 wt % CF/15 wt% CB	4.0	30	7.5	[30]	
	9.5 wt% Graphene/silicon carbide nanowires (2:1),	1.2	32.5	27.1	[32]	
PU	6.7 wt% MWCNT	3	60	20	[33]	
PLLA	10 wt% MWCNT	2.5	23	9.2	[34]	
UHMWPE	10 wt% MWCNT	1	50	50	[35]	
Epoxy	0.66 wt% 3D CNT	2	33	15.5	[36]	
PMMA	20 wt% SWCNT	4.5	30	6.7	[37]	
PDMS	0.8 wt% graphene	1	21	21	[38]	
PU foam	10 wt% graphene	60	57.7	0.96	[39]	
PS	10 wt% functionalized graphene	2.8	18	6.4	[40]	
Porous PS	30 wt% graphene	2.5	29	11.6	[41]	

Table S3. SE/t values of various PVDF-based shielding materials

References

- [1] B. Yuan, et al., Carbon 75 (2014) 178-189.
- [2] A.P. Singh, et al., Carbon 50 (10) (2012) 3868-3875.
- [3] B.V.B. Rao, P. Yadav, R. Aepuru, H.S. Panda, S. Ogale, S.N. Kale, Phys. Chem. Chem. Phys. 17 (28) (2015) 18353-18363.
- [4] J. Li, S. Qi, M. Zhang, Z. Wang, J. Appl. Polym. Sci. 132 (33) (2015).
- [5] B. Zhao, C. Zhao, R. Li, S.M. Hamidinejad, C.B. Park, ACS Appl. Mater. Inter. 9 (24) (2017) 20873-20884.
- [6] H. Kim, et al., Appl. Phys. Lett. 84 (4) (2004) 589-591.
- [7] M. Farukh, A.P. Singh, S.K. Dhawan, Compos. Sci. Technol. 114 (114) (2015) 94-102.

- [8] Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater. 26 (2) (2016) 303-310.
- [9] L. Wang, B.K. Tay, K.Y. See, Z. Sun, L. Tan, D. Lua, Carbon 47 (8) (2009) 1905-1910.
- [10] M.H. Al-Saleh, U. Sundararaj, Carbon 47 (7) (2009) 1738-1746.
- [11] Y. Li, X. Pei, B. Shen, W. Zhai, L. Zhang, W. Zheng, RSC Adv. 4 (63) (2015) 24342-24351.
- [12] S. Kuester, et al., Compos. Part B. 84 (84) (2016) 236-247.
- [13] Q.J. Krueger, J.A. King, Adv. Polym. Tech. 22 (2) (2003) 96-111.
- [14] G. De Bellis, A. Tamburrano, A. Dinescu, M.L. Santarelli, M.S. Sarto, Carbon 49 (13) (2011) 4291-4300.
- [15] V. Panwar, R.M. Mehra, Polym. Eng. Sci. 48 (11) (2008) 2178-2187.
- [16] M. Arjmand, A.A. Moud, Y. Li, U. Sundararaj, RSC Adv. 5 (70) (2015) 56590-56598.
- [17] M.H. Alsaleh, G.A. Gelves, U. Sundararaj, Compos. Part A. 42 (1) (2011) 92-97.
- [18] X. Huang, B. Dai, Y. Ren, J. Xu, P. Zhu, J. Nanomater. 2015 (2015) 2.
- [19] H. Gargama, A.K. Thakur, S. Chaturvedi, J. Appl. Phys. 117 (22) (2015) 224903.
- [20] H. Cheng, et al., Compos. Part A. 121 (2019) 139-148.
- [21] H. Zhang, et al., Chem. Eng. J. 379 (2020) 122304.
- [22] B. Zhao, et al., Carbon 127 (2018) 469-478.
- [23] I. Arief, S. Biswas, S. Bose, ACS Appl. Mater. Inter. 9 (22) (2017) 19202-19214.
- [24] X. Li, et al., ACS Appl. Mater. Inter. 10 (47) (2018) 40789-40799.
- [25] M. Sharma, M.P. Singh, C. Srivastava, G. Madras, S. Bose, ACS Appl. Mater. Inter. 6 (23) (2014) 21151-21160.
- [26] K. Rajavel, et al., Compos. Part A. 129 (2020) 105693.
- [27] S. Zeng, et al., Carbon 155 (2019) 34-43.
- [28] N. Joseph, M.T. Sebastian, Mater. Lett. 90 (2013) 64-67.
- [29] X. Zha, et al., Compos. Part A. 105 (2018) 118-125.
- [30] G.P. Kar, S. Biswas, R. Rohini, S. Bose, J. Mater. Chem. A 3 (15) (2015) 7974-7985.
- [31] J. Song, Q. Yuan, H. Zhang, B. Huang, F. Fu, J. Polym. Res. 22 (8) (2015).
- [32] C. Liang, M. Hamidinejad, L. Ma, Z. Wang, C.B. Park, Carbon 156 (2020) 58-66.
- [33] C. Zhang, Q. Ni, S. Fu, K. Kurashiki, Compos. Sci. Technol. 67 (14) (2007) 2973-2980.
- [34] T. Kuang, et al., Carbon 105 (2016) 305-313.
- [35] M.H. Al-Saleh, Synthetic Met. 205 (2015) 78-84.
- [36] Y. Chen, H. Zhang, Y. Yang, M. Wang, A. Cao, Z. Yu, Adv. Funct. Mater. 26 (3) (2016) 447-455.
- [37] N.C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti, H. Wang, Polym. Eng. Sci. 49 (8) (2009) 1627-1634.
- [38] Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Adv. Mater. 25 (9) (2013) 1296-1300.
- [39] B. Shen, Y. Li, W. Zhai, W. Zheng, ACS Appl. Mater. Inter. 8 (12) (2016) 8050-8057.
- [40] C. Li, et al., Polym. Int. 62 (7) (2013) 1077-1084.
- [41] D. Yan, P. Ren, H. Pang, Q. Fu, M. Yang, Z. Li, J. Mater. Chem. 22 (36) (2012) 18772.