Supporting Information

Preparation and characterization of sodium-ion conductive Na₃BS₃ glass and glass-ceramic electrolytes

Fumika Tsuji,^a Akira Nasu,a Chie Hotehama,^a Atsushi Sakuda,^a

Masahiro Tatsumisago,^a and Akitoshi Hayashi^{*a,b}

^a Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
^b Elements Strategy Initiative for Catalysts and Batteries, Kyoto University,
Sakyo, Kyoto 606-8501, Japan.

*Correspondence to: hayashi@chem.osakafu-u.ac.jp

Phase			Na ₃ BS ₃			
Crystal System			Monoclinic			
Spase Group			C 2/c (No. 15)			
Lattice Para	meter, Volume	e, Z	a = 11.853 Å, b	b = 6.664 Å	, c = 8.406 Å	, $V = 585.274$ Å ³
			$\alpha = 90, \ \beta = 118.18, \ \gamma = 90, \ Z = 4$			
Atoms	x	У	Z,	Site	Occupancy	
Na1	0.40274(6)	0.21349(9)	0.49570(8)	8f	1.0000	
Na2	0.25000	0.25000	0.00000	4c	1.0000	
S 1	0.50000	0.14347(6)	0.25000	4e	1.0000	
S2	0.13550(3)	0.05790(5)	0.25321(4)	8f	1.0000	
В	0.50000	0.4217(3)	0.25000	4e	1.0000	

Table S1 Atomic coordinates of the Na_3BS_3 crystal¹⁸.

Table S2 Ionic conductivities at 25 °C (σ_{25}) and activation energy (E_a) for conduction of sodium-ion conducting glassy electrolytes.

Composition	σ_{25} / S cm ⁻¹	$E_{\rm a}$ / kJ mol ⁻¹	Ref.
Na ₃ PO ₄	3.2×10^{-10}	133	20
Na ₃ BO ₃	$1.5 imes 10^{-8}$	61	13
Na ₃ PS ₄	$6.0 imes10^{-6}$	47	5
$Na_4P_2S_7$	$1.6 imes 10^{-6}$	_	21
NaPS ₃	$3.0 imes10^{-7}$	_	21
$Na_4B_2S_5$	$4.4 imes 10^{-7}$	48	14

Fig. S1 XRD patterns of $xNa_2S \cdot (1-x)B_2S_3$ glass electrolytes synthesized via a mechanochemical process from the crystal corresponding to each composition.

Fig. S2 (a) Schematic diagram of the crystal structure of monoclinic Na_3BS_3 .¹⁸ The red, green, and yellow spheres are Na, B, and S, respectively. (b) Image diagram of the monoclinic structure. The Na layers and B–S layers located at different z-positions are shown on the left. The right shows the arrangement of atoms in one layer. The B sites of the B–S layers are 1/3 occupied. Three-coordinated unoccupied B sites are shown as gray spheres.

Fig. S3 Nyquist plot at 30 °C of Na₃BS₃ glass.

Fig. S4 Room-temperature ionic conductivities and activation energies (E_a) for conduction of $xNa_2S \cdot (1-x)B_2S_3$ glass electrolytes.

Fig. S5 (a) Cyclic voltammogram of the Na_3BS_3 glass. Stainlesssteel and $Na_{15}Sn_4$ -KB was used as working and counter electrodes, respectively. The potential sweep was performed with a scanning rate of 5.0 mV min⁻¹ at 60 °C. (b) Cross-sectional SEM image of the cell after cyclic voltammetry. The working electrode of stainless steel was removed from the cell and two layers of Na_3BS_3 / $Na_{15}Sn_4$ -KB are observed.