Electronic Supplementary Information (ESI)

Mesoporous Silica-coated Gold Nanorods Loaded with Tetrazolyl Phthalocyanine as NIR Light-activated Nano-switch for Synergistic Photothermal and Photodynamic Inactivation of Antibiotic-resistant *Escherichia coli*

Qiuhao Ye,^a Shuanghuang Xiao,^a Ting Lin,^b Yufeng Jiang,^a Yiru Peng*^a and Yide Huang*^b

^a College of Chemistry & Material, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Province Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, China. E-mail: yirupeng@fjnu.edu.cn

^b Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, China. E-mail: ydhuang@fjnu.edu.cn

Fig. S1 ¹H NMR spectrum of Tet-SiPc (400 MHz, DMSO-d₆).

Fig. S2 ESI-MS spectrum of Tet-SiPc.

Fig. S3 FT-IR spectrum of Tet-SiPc.

Fig. S4 Raman spectrum of Tet-SiPc.

Fig. S5 Fluorescence decay curve of Tet-SiPc in DMSO (λ_{ex} =405 nm, C_{Tet-SiPc}=1×10⁻⁵ mol/L).

Fig. S6 Absorbance spectra of Tet-SiPc in DMSO using DPBF as a singlet oxygen quencher upon 670 nm laser irradiation for different duration ($C_{Tet-SiPc} = 3 \times 10^{-6} \text{ mol/L}$).

Tet-SiPc@AuNR@SiO ₂								
Compounds	Solvent	$\lambda_{Qmax}(nm)$	Log ε	$\lambda_{em} \left(nm \right)$	τ_{s}/ns	${\Phi_\Delta}^*$	${\Phi_F}^*$	
Tet-SiPc	DMSO	683	4.73	677	5.23	0.355	0.0522	
AuNR	H ₂ O	801						
AuNR@SiO ₂	H ₂ O	824						
Tet-SiPc@AuNR@SiO ₂	H ₂ O	845						

Table S1. Photophysical and photochemical properties of Tet-SiPc, AuNR, AuNR@SiO2 and

*n-ZnPc in DMSO (Φ_{Δ} =0.67, $\Phi_{F(std)}$ =0.20) was employed as the standard.

Fig. S7 EDX spectrum of AuNR. Elemental analysis was summarized in the following Table S2.

Table S2. EDX elemental analysis of AUNK.						
Element	С	Ν	Br	Au		
At %	91.19	1.58	5.82	1.41		

Table S2. EDX elemental analysis of AuNR

Fig. S8 EDX spectrum of AuNR@SiO₂. Elemental analysis was summarized in the following Table S3.

Table S3. EDX elemental analysis of $AuNR(a)SiO_2$.						
Element	С	Ν	0	Si	Br	Au
At %	35.99	8.99	34.13	11.03	0.19	9.67

Fig. S9 EDX spectrum of Tet-SiPc@AuNR@SiO₂. Elemental analysis was summarized in the following Table S4.

Table S4. EDX elementa	l analysis of	Tet-SiPc@AuN	$R@SiO_2.$
------------------------	---------------	--------------	------------

Element	С	Ν	0	Si	S	Br	Au
At %	65.74	1.80	21.96	3.10	0.28	0.57	6.55

Fig. S10 Absorbance spectra of AuNR in water using ABDA as a singlet oxygen quencher upon 671 nm laser irradiation with a power density of 100 mW/cm⁻² for different duration.

Fig. S11 Absorbance spectra of AuNR@SiO₂ in water using ABDA as a singlet oxygen quencher upon 671 nm laser irradiation with a power density of 100 mW/cm⁻² for different duration.

Fig. S12 Absorbance spectra of Tet-SiPc@AuNR@SiO₂ in water using ABDA as a singlet oxygen quencher upon 671 nm laser irradiation with a power density of 100 mW/cm⁻² for different duration.