Electronic Supporting information

Thermally stable SiO₂@TiO₂ core@shell nanoparticles for application in photocatalytic self-cleaning ceramic tiles

Elias P. Ferreira-Neto^{1,2}, Sajjad Ullah^{2,3,4*}, Vitor P. Martinez¹, Jean M.S.C Yabarrena¹, Mateus B. Simões¹, Amanda P. Perissinotto¹, Heberton Wender⁴, Fabio S. de Vicente⁵, Paul-Ludwig M. Noeske⁶, Sidney J.L. Ribeiro², Ubirajara P. Rodrigues-Filho^{1*}

¹Institute of Chemistry of São Carlos, University of São Paulo (USP), 13560-970, São Carlos, SP, Brazil

²Institute of Chemistry-São Paulo State University (UNESP), 14800-060, Araraquara-SP, Brazil

³Institute of Chemical Sciences, University of Peshawar, 25120, Peshawar, KP Pakistan ⁴Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva S/N, 79070-900 Campo Grande, MS, Brazil

⁵Institute of Geosciences and Exact Sciences, Department of Physics, São Paulo State University (UNESP), 13500-970, Rio Claro, SP, Brazil

⁶Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 28359, Bremen, Germany

*Corresponding authors: <u>sajjadullah@uop.edu.pk</u> (S.U.): <u>ubirajara@usp.br (U.P.R.F.)</u>

Figure S1 – *Ex-situ* Powder X-ray diffractograms of SiO₂@TiO₂ (annealed at 600 °C, 800 °C and 1000 °C for 1h) obtained using a benchmark Bruker D8-Advance X-ray diffractometer.

Figure S2: PL emission spectra under 325 nm of the $SiO_2@TiO_2$ particles beofre calciantion and after calcination at diffrent temparture.

SiO₂@TiO₂-coated tiles

P25-coated tile

Figura S3. Digital photo of the CV-covered industrially-fired tiles after 30 min exposure to UV light. The SiO₂@TiO₂-coated tile exhbits better self-cleaning activity than P25-coated tile.

Figura S4 - Raman spectra of the P25 TiO_2 -coated ceramic tiles after annealing using (a) laboratory furnace (1000 °C, 1h, 15°C/min) and (b) industrial single firing process(1140 °C, 20 min). The Raman modes of rutile have been marked (#) on the Raman spectra. The high-temperature firing leads to complete conversion of the anatase fraction of P-25 to rutile phase in both cases.

Table S1: Comparions of the preparation methods and photocatalytic performance of diffrent ${\rm TiO}_2$ -based coatings

Coating Material	Tile type	Firing temperature	Final TiO ₂ Crystalline phase	Photocatalytic behavior	Reference
Micrometric anatase particles	Fired glazed ceramic tiles	600–1100 °C (lab oven)	Anatase-rutile mixture (600 °C); Rutile (1100 °C	Good photoactivity for materials sintered at 600–950 °C. No photoactivity for samples fired at 1100 °C	[1]
Sub-micrometric anatase particles (dispersed in glaze mixture)	Fired glazed ceramic tiles	850–900 °C (lab oven)	Rutile (resulting from A→R transformation at 850–1000 °C)	Low photoactivity due to $A \rightarrow R$ transformation and entrapment of TiO ₂ particles inside the glaze layer	[2]
TiO ₂ anatase nanoparticles	Unfired and fired (glazed or unglazed) ceramic tiles	600–1000 °C (lab oven) or 1210 °C (industrial single firing)	Rutile (resulting from A→R transformation at 1000–1210 °C	Good photoactivity for samples treated at 600 °C. Negligible photoactivity for samples fired at 1000–1200 °C due to A→R transformation and drastic increase in crystallite size	[3]
Nb_2O_5 -doped TiO_2 nanoparticles	Fired glazed ceramic tiles	600–900 °C (lab oven)	Anatase-rutile mixture (800 °C); Rutile (900 °C)	Better photoactivity than undoped TiO ₂ coating which decreases upon calcination at 900 °C	[4]
Nanocrystalline W-doped TiO ₂ films	Fired glazed ceramic tiles	400–800 °C (lab oven)	Anatase (800 °C)	Highest photoactivity for samples treated at 600 °C which decrease upon calcination at 800 °C. W-doping prevented A→R transformation at 800°C but did not improve photoactivity compared to undoped titania film	[5]
SiO ₂ @TiO ₂ nanoparticles	Unfired glazed ceramic tiles	1000 °C (lab oven) or 1140 °C (industrial single firing procedure)	Anatase (1000 °C); Partial conversion to rutile (1140 °C)	Higher photoactivity than P25 (TiO ₂) control samples. Highest photoactivity after single fire sintering (1140 °C) due to formation of anatase/rutile heterojunction	This study