Electronic supplementary information (ESI)

Alkylamine screening and zinc doping of highly luminescence 2D tin-

halide perovskites for LED lighting

Yao Liu,‡^a Aifei Wang,‡^b Jiajing Wu,^a Chuying Wang,^a Ziliang, Li,^c Guangcai Hu,^a Shiqi Sui,^a Jia-Xin She,^d Wen Meng,^a Weiqiang Li^d and Zhengtao Deng^{*a}

^aCollege of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China. Email: <u>dengz@nju.edu.cn</u>;

^bcurrent address: Institute of Advanced Materials (IAM), Nanjing Tech University (NJ Tech), 5 Xinmofan Road, Nanjing 210009, P.R. China;

^cDepartment of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada;

^dState Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu, 210023, PR China.

Fig. S1 FTIR spectra of 2D $(RNH_3)_2SnBr_4$ perovskites (For simplicity, we use *Cn* to present $(RNH_3)_2SnBr_4$ samples and *n* stands for the number of carbon chain).

Some of the characteristic peaks of 2D (RNH₃)₂SnBr₄ perovskites are described as follows:

 NH_{3}^{+} stretching vibrations: ~3108 cm⁻¹ (C6), ~3110 cm⁻¹(C8),

~3193 cm⁻¹ (C12), ~3118 cm⁻¹ (C18)

-NH₂ bending vibrations: \sim 1570 cm⁻¹

C-H symmetric and asymmetric stretching vibrations: \sim 2850 cm⁻¹ and \sim 2920 cm⁻¹

-CH₃ bending vibrations: \sim 1470 cm⁻¹

C-N stretching vibrations: \sim 1071 cm⁻¹

C-C stretching vibrations: \sim 722 cm⁻¹

Fig. S2 High-resolution XPS spectra of C, N, Sn, and Br elements of 2D $(C_8H_{17}NH_3)_2SnBr_4$ perovskites.

Fig. S3 Scanning electron microscopy (SEM) images of $(C_6H_{13}NH_3)_2SnBr_4$ (a, b), $(C_8H_{17}NH_3)_2SnBr_4$ (c, d), $(C_{12}H_{25}NH_3)_2SnBr_4$ (e, f), and $(C_{18}H_{35}NH_3)_2SnBr_4$ (g, h) perovskites at other magnifications.

Fig. S4 Energy-dispersive X-ray spectroscopy (EDS) mapping images of $(C_6H_{13}NH_3)_2SnBr_4$ (a), $(C_8H_{17}NH_3)_2SnBr_4$ (b), $(C_{12}H_{25}NH_3)_2SnBr_4$ (c), and $(C_{18}H_{35}NH_3)_2SnBr_4$ (d) perovskites.

Fig. S5 TEM (a) and HAADF-STEM (b) images of $(C_{18}H_{35}NH_3)_2SnBr_4$ perovskites.

Fig. S6 Plots of $(\alpha h u)^2 vs$ photo energy (hu) of 2D $(C_6H_{13}NH_3)_2SnBr_4$ (a), $(C_8H_{17}NH_3)_2SnBr_4$ (b), $(C_{12}H_{25}NH_3)_2SnBr_4$ (c), and $(C_{18}H_{35}NH_3)_2SnBr_4$ (d) perovskites.

Fig. S7 (a, b, c, d) The absolute PLQYs of as-synthesized 2D $(RNH_3)_2SnBr_4$ perovskites under different excitation wavelengths. (For simplicity, we use Cn to present $(RNH_3)_2SnBr_4$ samples and n stands for the number of carbon chain).

Fig. S8 Stability curves displayed by the PLQYs of $(RNH_3)_2SnBr_4$ perovskites. (For simplicity, we use Cn to present $(RNH_3)_2SnBr_4$ samples and n stands for the number of carbon chain).

Fig. S9 Other scanning electron microscopy (SEM) images of 2D $(C_8H_{17}NH_3)_2Sn(2Br/I)_4$ (a, b) and $(C_8H_{17}NH_3)_2SnI_4$ (c, d) perovskites at different magnifications.

Fig. S10 FTIR spectra of 2D $(C_8H_{17}NH_3)_2Sn(2Br/I)_4$ and $(C_8H_{17}NH_3)_2SnI_4$ perovskites.

Fig. S11 Plots of $(\alpha h \upsilon)^2$ vs photo energy $(h \upsilon)$ of $(C_8 H_{17} N H_3)_2 Sn(2Br/I)_4$ (a) and $(C_8 H_{17} N H_3)_2 SnI_4$ (b) perovskites.

Fig. S12 Powder X-ray diffraction (PXRD) patterns for Zn^{2+} -doped and undoped ($C_8H_{17}NH_3$)₂SnBr₄ (a), Zn^{2+} -doped and undoped ($C_8H_{17}NH_3$)₂SnI₄ perovskites (b).

Sample	PLQY (%)	τ _{avg} (μs)	k _r (μs ⁻¹)	k _{nr} (μs ⁻¹)	kr/ k _{nr}
$(C_6H_{13}NH_3)_2SnBr_4$	35.0	1.60	0.2188	0.4063	0.5385
$(C_8H_{17}NH_3)_2SnBr_4$	82.0	4.99	0.1643	0.0361	4.5550
$(C_{12}H_{25}NH_3)_2SnBr_4$	60.2	5.31	0.1136	0.0750	1.5150
$(C_{18}H_{35}NH_3)_2SnBr_4$	50.5	5.21	0.0988	0.0931	1.0612

Table. S1 Radiative transition rate (k_r), non-radiative transition rate (k_{nr}) and k_r / k_{nr} of the samples.

Table. S2 τ_{avg} and R^2 of the undoped and doped samples.

	C8	C8-ZnBr ₂	C8-I	C8-Znl ₂	
τ _{avg} (μs)	4.99	4.40	1.41	1.93	
R ²	0.999	0.999	0.998	0.995	

Sample	PLQY (%)	$\tau_{avg}(\mu s)$	k _r (μs ⁻¹)	k _{nr} (μs⁻¹)	k _r /k _{nr}
C8	82.0	4.99	0.1643	0.0361	4.5550
$C8-ZnBr_2$	85.0	4.40	0.1932	0.0341	5.6670
C8-I	33.0	1.51	0.2340	0.4752	0.4924
C8-Znl ₂	50.0	1.93	0.2591	0.2591	1.0000

Table. S3 Radiative transition rate (k_r), non-radiative transition rate (k_{nr}) and k_r/k_{nr} of the samples.