Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Transition Metal Oxynitrides Catalysts for Electrochemical Reduction of Nitrogen to Ammonia

Damilola Ologunagba, and Shyam Kattel^{*} Department of Physics, Florida A&M University Tallahassee, FL 32307 USA

*Corresponding author: shyam.kattel@famu.edu

Figure S1. Three main pathways for ENRR: (i) distal, (ii) alternating, and (iii) enzymatic. (Figure adapted from ref.¹ with permission).

Figure S2. DFT optimized geometries of (a) *H, (b) N_2 , (c) N_2 H, (d) N_2 H₂, (e) *NH, (f) *NH₂, (g) *NH₃, (h) *O, and (i) *N adsorbed on O-vac of MnNO(111). Mn: purple, N: gray, O: red, H: blue.

Table S1. ZPE and TS values of the adsorbed specie	es.
--	-----

		1
species	ZPE/eV	TS/eV
*N2	0.18	0.18
*N ₂ H	0.51	0.08
*N ₂ H ₂	0.87	0.11
*HNNH	0.84	0.15
*N	0.10	0.02
*H	0.18	0.00
*NH	0.38	0.04
*NH ₂	0.67	0.07
*NH ₃	1.01	0.12
$H_2(g)$	0.27	0.41
$N_2(g)$	0.15	0.60
NH ₃ (g)	0.89	0.74
$H_2O(g)$	0.58	0.65

Figure S3. DFT calculated binding energies of reaction intermediates on N-vac and O-vac.

Figure S4. Density of state (DOS) plots for all the TMNO on N-vac and O-vac.

Reaction coordinate

Figure S5. DFT calculated free energy diagrams at U = 0 V along the associative N_2H_2 pathway on O-vacancy.

Figure S6. DFT calculated free energy diagrams of ENRR at U = 0 V along the dissociative pathway on O-vac.

Reaction coordinate

Figure S7. DFT calculated free energy diagrams of ENRR at U = 0 V along the associative N₂H pathway on O-vac.

REFERNCES

1 Z. Wei, Y. Feng and J. Ma, J. Energy Chem., 2020, 48, 322–327.