Supporting Information

Li-air battery and ORR activity of nanocarbons produced on synthesis rate by solution plasma process

Md. Zahidul Islam,^a Anyarat Watthanaphanit,^b Sangwoo Chae,^a and Nagahiro Saito, ^{a,c,d,e,*}

^a Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
^b Department of Chemistry, Faculty of Science, Mahidol University, 272 Thanon Rama
VI, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
^c Japan Research for Evolutional Science and Technology (CREST), Japan Science and

Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan

^d Institutes for Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan

^e Conjoint Research Laboratory in Nagoya University, Shinshu University, Furo-cho, Chikusa, Nagoya 464-8603, Japan

Corresponding author

E-mail: hiro@rd.numse.nagoya-u.ac.jp Telephone: +81-52-789-3259

Benzene conversion pathway is polymerization by SPP

Fig. S1. Schematic of nanocarbon formation from BZ using SPP.

Fig. S2 XPS elemental compositions (% atom) of nanocarbons of BZ, BZ-NH₂ and BZ-NO₂

Table S1. The carbon yield (%) and synthesis rate are calculated form the carbon powder

Conditions	Carbon	Synthesis rate, R	Carbon yield, Y
	Powder, M	(mg/min)	(%)
	(mg)		
BZ (50 KHz, 0.5 μs)	1260	42	1.61
BZ (150 KHz, 0.5 μs)	1500	50	1.92
BZ-NO ₂ (50 KHz, 0.5 μs)	180	6	0.15
BZ-NO ₂ (150 KHz, 0.5 μs)	390	13	0.32
BZ-NH ₂ (50 KHz, 0.5 μs)	210	7	0.23
BZ-NH ₂ (50 KHz, 0.5 μs)	450	15	0.48

Frequency (kHz)	Surface (m ² /g)	area	Pore volume (cm ³ /g)	Average pore diameter (nm)
BZ	220		0.45	20.0
BZ-NH ₂	230		0.49	17.0
BZ-NO ₂	222		0.46	15.0

Table S2. SPP conditions for the conversion of palm oil to nanocarbon composite for 1 μ s and 40 min discharge.

Table S3. The resistance (Ω) , surface resistance (Ω/cm^2) , resistivity $(\Omega.cm)$ and electrical conductivity (s/cm) tested by four-point probe in the different conditions for benzene.

Conditions	Film thickness	Resistance (Ω)	Surface restance (O/am^2)	Electrical conductivity	Resistivity (Ω.cm)
	(µm)		(Ω/cm^2)	(s/cm)	
Benzene	88	6.98x10 ³	3.16x10 ⁴	3.59x10 ⁻³	278.4
(150 kHz,0.5 µs)					
Benzene	112	7.89x10 ³	3.57x10 ⁴	2.53x10 ⁻³	395.9
(100 kHz,0.5 µs)					
Benzene	95	9.88x10 ³	4.48x10 ⁴	2.48x10 ⁻³	403.0
(50 kHz,0.5 µs)					

Table S4. The resistance (Ω), surface resistance (Ω /cm²), resistivity (Ω .cm) and electrical conductivity (s/cm) tested by four-point probe in the different conditions for Aniline.

Conditions	Film thickness (µm)	Resistance (Ω)	Surface restance (Ω/cm^2)	Electrical conductivity (s/cm)	Resistivity (Ω.cm)
Aniline (150 kHz,0.5 μs)	70	5.29x10 ⁴	2.40x10 ⁵	6.61x10 ⁻⁴	1513
Aniline (100 kHz,0.5 μs)	76	6.06x10 ⁴	2.75x10 ⁵	5.78x10 ⁻⁴	1729
Aniline (50 kHz,0.5 μs)	63	8.31x10 ⁴	3.77x10 ⁵	4.22x10 ⁻⁴	2373

Table S5. The resistance (Ω), surface resistance (Ω /cm²), resistivity (Ω .cm) and electrical conductivity (s/cm) tested by four-point probe in the different conditions for Nitro-benzene.

Conditions	Film thickness (µm)	Resistance (Ω)	Surface restance (Ω/cm^2)	Electrical conductivity (s/cm)	Resistivity (Ω.cm)
Nitro-Benzene (150 kHz,0.5 µs)	181	9.30x10 ³	4.22x10 ⁴	2.14x10 ⁻³	467.8
Nitro-Benzene (100 kHz,0.5 µs)	170	7.05x10 ³	3.19x10 ⁴	1.72x10 ⁻³	577.4
Nitro-Benzene (50 kHz,0.5 µs)	164	7.70x10 ³	3.17x10 ⁴	1.73x10 ⁻³	581.4