Supporting Informations

For

The disparity in piezofluorochromism for twisted mono-carbazole-based AIEgens by interchanging electron-rich substituents: Effect of coplanarity on twisted π -conjugates

Banchhanidhi Prusti and Manab Chakravarty*

Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad-500078, Telangana (India)

Contents:

1.	Synthetic scheme for TMBπCBZ and CBZπTMB (Scheme-1)	S2
2.	Thermogravimetric analysis (TGA) plot (Fig-S1)	S2
3.	Solution-state abs. and emission spectra (Fig-S2)	S3
4.	Absorption spectra at different fractions of water (Fig-S3)	S3
5.	Dynamic light scattering (DLS) plots (Fig-S4)	S3
6.	Solid-state absorption spectra before and after grinding (Fig-S5)	S4
7.	PFC emission wavelength for multiple grinding/fuming (Fig-S6)	S4
8.	Solid-state lifetime decay plots (Fig-S7)	S5
9.	Lifetime measurement table (Table-S1)	S5
10.	. Single-crystal X-ray table (Table-S1)	S5-S6
11.	. DSC plot before and after grinding for TMBπCBZ (Fig-S8)	S6
12.	. Molecular orbital diagram (Fig-S9)	§7
13.	. Hishfeld surface 2D fingerprint plots (Fig-S10)	S7
14.	. Void space diagram (Fig-S11)	S7
15.	. ¹ H NMR spectra for TMBπCBZ (Fig-S12)	S8
16	. ¹³ C NMR spectra for TMB π CBZ (Fig-S13)	S8
17.	. ESI-MS spectra for TMBπCBZ (Fig-S14)	S9
18	. ¹ H NMR spectra for CBZπTMB (Fig-S15)	S9
19	. ¹³ C NMR spectra for CBZπTMB (Fig-S16)	S10
20.	. ESI-MS spectra for TMBπCBZ (Fig-S17)	S10

Scheme S1: Synthetic route for TMBπCBZ and CBZπTMB

Fig S1: TGA plot for TMBπCBZ and CBZπTMB

Fig S2: Absorbance and emission spectra of both the positional isomers in different polar solvents.

Fig S3: Absorption spectra of the compounds. 10 μ M acetonitrile solution upon gradual addition of water fraction [a nonsolvent $f_w(v/v\%)$]

Fig S4: DLS studies for TMB π CBZ and CBZ π TMB at f_w = 70% and f_w = 90% respectively.

Fig S5: solid-state absorption spectra for TMB π CBZ and CBZ π TMB before and after grinding

Fig S6: The plot of maximum emission wavelength changes with multiple grinding/Fuming process.

Fig S7: Solid-state lifetime decay for TMB π CBZ and CBZ π TMB

Table S1: Parar	neter related to	lifetime measu	rement of excited state.
-----------------	------------------	----------------	--------------------------

Samples	States	α_1	α ₂	T ₁	T ₂	χ^2	τ (ns)
	Pristine	0.07	0.93	0.03	4.35	1.09	4.05
ΤΜΒπCΒΖ	Ground	0.12	0.88	0.3	2.64	1.01	2.36
	Pristine	0.28	0.72	0.45	29	1 21	2 21
	1 Histille	0.20	0.72	0.15	2.7	1.21	2.21
CBZ πTMB	Ground	0.32	0.68	0.85	1.8	1.11	1.50

Table S2. Single-crystal X-ray table for TMB π CBZ and CBZ π TMB

Compounds	ΤΜΒπCΒΖ	CBZπTMB
Emp. Formula	C42 H39 N O3	C42 H39 N O3
Formula weight	605.74	605.74
Crystal system	triclinic	monoclinic
Space group	P -1	P 1 21/n 1
<i>a</i> /Å	8.9859(3)	8.89830(10)
b /Å	12.6291(2)	14.1159(4)
<i>c</i> /Å	15.4962(4)	25.3397(3)

α/degree	72.582(2)	90
β/degree	77.414(2)	93.5670(10)
∕/degree	80.067(2)	90
$V/Å^3$	1626.71(8)	3176.69(10)
Ζ	2	4
$D_{\text{calc}}/\text{g cm}^{-3}$]	1.265	1.267
μ/mm^{-1}	0.612	0.615
F (000)	660.0	1288.0
Data/ restraints/ parameters	6246 /0/429	5598/0/419
S	1.056	1.035
R1 [I>2σ(I)]	0.0396	0.0501
wR2 [all data]	0.1116	0.1438
Max./min. residual electron dens. [eÅ ⁻³]	0.327/-0.238	0.326/-0.263

Fig S8: DSC thermogram for PFC-active $TMB\pi CBZ$ in pristine and ground state.

Fig S9: Molecular Orbital diagram for TMBπCBZ and CBZπTMB

Fig S10: (a) d_{norm} Hirshfeld surface for **TMB** π **CBZ** and their 2D finger plots of C...H, H...C and C...C interactions, (b) d_{norm} Hirshfeld surface for **CBZ** π **TMB** and their 2D finger plots of C...H, H...C and C...C interactions

Fig S11: Void space for the isomers calculated from crystal Explorer 17.

Fig S12: ¹H NMR spectrum for TMBπCBZ in CDCl₃

Fig S13: ¹³C NMR spectrum for TMB π CBZ in CDCl₃

Fig S15: ¹H NMR spectrum for CBZπTMB in CDCl₃

Fig S16: ¹³C NMR spectrum for CBZπTMB in CDCl₃

Fig S17: ESI-MS spectrum for CBZπTMB

END