Supporting Information

Formamide Iodide: A new cation additive for inhibiting δ -phase formation of formamidinium lead iodide perovskite

AUTHOR NAMES

Itaru Raifuku,^a Yu-Hsien Chiang,^a Cheng-Hung Hou,^b Ming-Hsien Li,^{a,c} Chen-Fu Lin,^a Pei-Ying Lin,^a Jing-Jong Shyue ^b and Peter Chen^{* a, d}

^aDepartment of Photonics, National Cheng Kung University, Tainan 70101, Taiwan

^bResearch Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

^cDepartment of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou, 54561, Taiwan

^dHierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan

AUTHOR INFORMATION

Corresponding Author

*E-mail: petercyc@ncku.edu.tw

Figure S1 Powder XRD patterns of formamide iodide (FoAI) and formamidinium iodide (FAI).

Figure S2 Resonance structures of formamide.

Figure S3 XRD patterns of PbI_2 , $PbBr_2$ films and a film prepared from a precursor solution including $PbBr_2$ and formamide iodide (FoAI) with the molar ratio of 1:1.

Figure S4 Photographs of PbI_2 and PbI_2 + FoAI solution (a) before and (b) after adding chlorobenzene.

Figure S5 (a) Surface potential of FAPbI₃ films with and without FoAI additive. Values in the graph are work function of both films. (b) Photoemission spectra of FAPbI₃ films with and without FoAI additive. Values in the graph are ionization potential of both films.

Figure S6 PL spectra of pure FAPbI₃ and FoAI added FAPbI₃ films. The black and red lines represent PL spectra of pure and FoAI added FAPbI₃ films, respectively.

Figure S7 SEM images of pure FAPbI₃ and FoAI added FAPbI₃ films.

Figure S8 Dark *I-V* curves of electron-only devices employing pure and FoAI added FAPbI₃ films.

Figure S9 Stability of FAPbI₃ perovskite solar cells kept at maximum power point under 1 sun irradiation without encapsulation.

Figure S10 EQE spectra of FoAI added triple-cation perovskite solar cells. The black, red, blue, green, and orange lines represent 0, 0.625, 1.25, 2.5 and 5 mol% FoAI added samples, respectively.

Figure S11 Absorbance spectra and (b) XRD patterns of FoAI added triple-cation perovskite films. The black, red, blue, green and orange line represent 0, 0.625, 1.25, 2.5 and 5 mol% FoAI added films.

Figure S12 SEM images of FoAI added triple-cation perovskite films.

Figure S13 Dark *I-V* curves of electron-only devices employing pure and FoAI added triple cation perovskite films.

Figure S14 FT-IR spectra of FoAI added triple-cation perovskite films. (a) from 4500 cm⁻¹ to 1000 cm⁻¹ and (b) from 2000 cm⁻¹ to 1000 cm⁻¹.

Figure S15 ToF-SIMS profile (positive ion) of (a) pure FAPbI₃ and (b) FoAI added FAPbI₃ films.

Figure S16 ToF-SIMS profile (negative ion) of FoAI added FAPbI₃ films.

Figure S17 ToF-SIMS profile (negative ion) of 5% FoAI added triple cation perovskite films.

Table S1 The peak positions and assumed bonding in the FT-IR spectrum of formamidinium iodide (FAI).

Wavenumber (cm ⁻¹)	Signal
3400-3000	N-H stretching
2800	C-H stretching
1700	C=N stretching
1600	N-H bending
1400-1200	C-N stretching

Table S2 The peak positions and assumed bonding in the FT-IR spectrum of formamide iodide (FoAI).

	Wavenumber (cm ⁻¹)	Signal
	3300-2900	N-H stretching
	2800	C-H stretching
1400	C-N stretching	
	1400	C-OH bending

Table S3 Hysteresis index of FAPbI₃ PSCs

Sample	Hysteresis index (%)
Pure FAPbI ₃	6.16±1.67
FoAI added	4.34±1.06

Table S4 Hysteresis index of triple cation PSCs

Hysteresis index (%)
3.94±0.57
3.81±0.87
4.23±0.62
4.28±0.69
5.78±0.37