Supporting Information

Defect clustering in an Eu-doped NaMgF₃ compound and its influence on luminescent properties

Afranio Sousa,^a Adelmo Souza^b and Heveson Lima^c

^aDepartamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristóvão, SE, Brazil

^bCentro Multidisciplinar do *Campus* de Bom Jesus da Lapa, Universidade Federal do Oeste da Bahia, 47600-000, Bom Jesus da Lapa, BA, Brazil

^cCentro Multidisciplinar do *Campus* de Luís Eduardo Magalhães, Universidade Federal do Oeste da Bahia, 47850-000, Luís Eduardo Magalhães, BA, Brazil

(A) Cubic NaMgF₃

Lattice parameters	Ref. 1	This work	%
a(A)	3.876	3.885	0.22
V(A ³)	58.2306	58.6139	0.66
Interatomic distance	Ref.1	This work	%
Na-F (x12)	2.741	2.747	0.22
Mg-F (x6)	1.938	1.942	0.20
F-F (x8)	2.741	2.747	0.22

Table S1- Lattice parameters and interatomic distance for cubic NaMgF₃.

Table S2- Elastic constants for cubic NaMgF₃.

Elastic Constants	Ref. 2	This work
C ₁₁	136.9082	151.4231
C ₁₂	31.8473	41.7655
C ₄₄	51.0104	41.7655

(B) Fluoride precursors (NaF and MgF₂)

Lattice parameters	Ref. 3	This work	%
<i>a</i> (A)	4.65	4.6599	0.2129
V (A ³)	100.5450	101.1895	0.6410
able S4- Elastic constants fo	r NaF.		
Elastic constants	Ref. 4	This work	%
C ₁₁	108.5	98.7431	-8.99
C ₁₂	22.90	28.3125	23.64
C ₄₄	28.99	28.325	-2.34
Dielectric constants	Ref. 4	This work	% 2 1
Table S5- Dielectric constants	s for NaF		
e ₀	4.73	4.83	2.1
e∞	1.75	1.91	9.1
Fable S6 - Lattice parameters	for MgF ₂ .		
Lattice parameters	Ref. 5	This work	%
a(A)	4.6213	4.5447	-1.66
b(A)	3.0519	3.1540	3.35
V(A ³)	65.1776	65.1456	-0.05
Fable S7 - Elastic constants fo	r MgF ₂ .		
Elastic Constants	Ref. 6	Ref. 7	This work
C ₁₁	140.80	142.70	120.89
C ₁₂	90.00	92.20	94.50

Table S3- Lattice parameters for NaF.

Elastic Constants	Ref. 6	Ref. 7	This work
C ₁₁	140.80	142.70	120.89
C ₁₂	90.00	92.20	94.50
C ₁₃	63.50	64.10	68.90
C ₃₃	205.30	204.00	213.66
C ₄₄	56.70	56.70	52.02
C ₆₆	95.70	93.50	95.14

(C) Defect calculations

Materials	Lattice energies (eV)
NaMgF ₃	-39.784
NaF	-9.573
MgF ₂	-29.998
EuF ₃	-51.717
EuF ₂	-25.430

Table S8- Lattice energy for orthorhombic NaMgF₃, fluorides precursors and dopants.

 Table S9-Defect formation energy for selected defects.

Defect Energy (eV)				
V _{Na}	V_{Mg}	V_{F}	Na _{Mg}	Mg_{Na}^{\bullet}
6.209	24.445	5.821	17.264	-15.016
Interstitial Position	on	Na _i	Mg _i	Fi
(1/2,1	/4,1/4)	-2.848	-16.860	-2.171
(1/2,1	/8,1/4)	-2.847	-16.865	-2.472
(1/2,1	/2,1/4)	-2.848	-16.851	-2.433
(1/4,1	/4,1/4)	-2.848	-16.854	-2.228

Table S10- Defect formation energy of Eu^{3+} and Eu^{2+} isolated ions doped orthorhombic $NaMgF_{3}.$

lmpurity (Eu ³⁺)	Energy defects (eV)		
$Eu_{Na}^{\bullet\bullet}$	-31.047		
Eu_{Mg}^{\bullet}	-15.276		
lmpurity (Eu ²⁺)	Energy defects (eV)		
Eu_{Na}^{\bullet}	-10.460		
Eu_{Mg}^{\times}	6.564		

Schemes	Solution Energies (bound defects) (in eV)			
Incorporating into Na site				
$Eu_{Na}^{\bullet\bullet} + 2F_i$	3.256			
$Eu_{Na}^{\bullet\bullet} + V_{Mg}^{"}$	2.758			
$Eu_{Na}^{\bullet\bullet} + 2V_{Na}$	2.914			
$Eu_{Na}^{\bullet\bullet} + 2Na_{Mg}^{\dagger}$	2.580			
$2Eu_{Na}^{\bullet\bullet} + V_{Mg}^{''} + 2F_i^{'}$	6.105			
Incorporating into				
$Eu_{Mg}^{\bullet} + F_i^{\prime}$	2.449			
$Eu_{Mg}^{\bullet} + V_{Na}^{\dagger}$	2.129			
$2Eu_{Mg}^{\bullet} + V_{Mg}^{''}$	5.641			
$Eu_{Mg}^{\bullet} + Na_{Mg}^{\bullet}$	2.843			
$2Eu_{Mg}^{\bullet} + Mg_{Na}^{\bullet} + 3F_{i}^{\prime}$	5.173			
Incorporating into Na and Mg sites				
$Eu_{Mg}^{\bullet} + Eu_{Na}^{\bullet\bullet} + 2V_{Na} + F_{i}$	5.310			
$Eu_{Mg}^{\bullet} + Eu_{Na}^{\bullet\bullet} + V_{Mg}^{''} + Na_{Mg}^{'}$	7.247			

Table S11- Solution energies of Eu^{3+} doped NaMgF₃.

Table S12- Solution	energies	of Eu ²⁺	doped	NaMgF ₃ .
---------------------	----------	---------------------	-------	----------------------

Schemes	Solution Energy (bound defects) (in eV)
Incorporating in	to
Na site	
$Eu_{Na}^{\bullet} + F_{i}$	2.623
$2Eu_{Na}^{\bullet} + V_{Mg}^{"}$	2.952
$Eu_{Na}^{\bullet} + V_{Na}^{\bullet}$	1.572
$2Eu_{Na}^{\bullet} + V_{Na}^{\dagger} + F_i$	3.729
$Eu_{Na}^{\bullet} + V_F^{\prime} + 2F_i^{\prime}$	2.438
$Eu_{Na}^{\bullet} + Na_{Mg}^{\dagger}$	1.523
$Eu_{Na}^{\bullet} + V_{Mg}^{\bullet} + V_F^{\bullet}$	3.224
$Eu_{Na}^{\bullet} + 2V_{Na}^{\dagger} + V_F^{\dagger}$	3.589
Incorporating in	to
Na site	
Eu_{Mg}^{\times}	1.996

Reference

- (1) J. Chen, H. Liu, C. D. Martin, J. B. Parise and J. Weidner, Am. Miner., 2005, **90**, 1534-1539.
- (2)R. Arar, T. Ouahrani, D. Varshney, R. Khenata, G. Murtaza, D. Rached, A. Bouhemadou, Y. Al-Douri, S. B. Omran and A. H. Reshak, Mater. Sci. Semicond. Process., 2015, **33**, 127–135.
- (3) G.I. Finch and S. Fordham, Proc. Phys. Soc., 1936, 48, 85-94.
- (4) C. R. A. Catlow, K. M. Diller and M. J. Norgett, J. Phys. C: Solid State Phys., 1977, **10**, 1395-1412.
- (5) W.H. Baur, Acta Crystallogr., Sect. B: Struct. Sci., 1976, 32, 2200–2204.
- (6) L.E.A. Jones, Phys. Chem. Minerals, 1977, 1, 179–197.
- (7) G. F. Davis, Earth Planet. Sci. Lett., 1977, 34, 300–306.