Supplementary Information

Investigation of the influence of Natural Deep Eutectic Solvents (NaDES) in the properties of chitosan-stabilised films.

Antonella Rozaria Nefeli Pontillo^a, Spyridon Koutsoukos^b, Tom Welton^b and Anastasia Detsi*^a

¹ Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Zografou, Greece

² Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, London W12 0BZ, UK.

Figure S1. Curve of pH Vs concentration of the bet:LA NaDES and physical mixture (top) and the ChCl:LA NaDES and physical mixture (bottom).

Figure S2. FT-IR spectra of the bet:LA NaDES (top) and the ChCl:LA NaDES (bottom).

Figure S3. Deconvolution of 1200-840 cm⁻¹ range for F/AA.

Model	Gauss								
Equation		$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$							
	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6			
y ₀	101.1 ± 0.1								
X _c	$1150.2 \pm 0.1 1076.4 \pm 0.3 999.9 \pm 0.2 936.8 \pm 0.3 890 \pm 0.2 855.2$					855.2 ± 0.6			
W	$19.3 \pm 0.2 \qquad 97.2 \pm 0.5 \qquad 57.0 \pm 0.5 \qquad 45.1 \pm 0.6 \qquad 21.4 \pm 0.5 \qquad 36.43 = 1000 \qquad 3000 \qquad 30000 \qquad 3000 \qquad 300$					36.6 ± 1.1			
А	-153 ± 3 -4122 ± 31 -1650 ± 32 -719 ± 15 -161 ± 6 $-172 =$								
R-Square	0.99929								
Adj. R-Square	0.99928								

Table S1. Accuracy of deconvolution model for F/AA.

Figure S4. Deconvolution of 1200-840 cm⁻¹ range for F/Tween.

Model	Gauss										
Equation	$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$										
	Peak 1	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7 Peak 8									
y_0		99.31 ± 0.05									
Xc	1149.4 ± 0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
W	17.7 ± 0.2	$2 \begin{array}{ c c c c c c c c c c c c c c c c c c c$						$\begin{array}{c} 28.4 \pm \\ 0.3 \end{array}$			
А	$ \begin{array}{ c c c c c c c } -118 \pm 3 & -784 \pm & -3056 \pm \\ 27 & 349 & -702 \pm 65 & -534 \pm \\ 16 & -874 \pm 8 & -138 \pm 3 & -249 \pm 4 \end{array} $										
R-Square	0.99974										
Adj. R- Square	0.99974										

Table S2. Accuracy of deconvolution model for F/Tween.

Figure S5. Deconvolution of 1200-840 cm⁻¹ range for F/0.5LA.

Model	Gauss									
Equation	$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$									
	Peak 1	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak								
y_0		99.0 ± 0.1								
Xc	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						$\begin{array}{c} 894.5 \pm \\ 0.6 \end{array}$			
W	26.6 ± 0.1	42.2 ± 0.6	35.7 ± 0.9	33.3±1.2	54.2 ± 4.5	19.8 ± 2	14.1 ± 1			
А	-975 ± 10	-1865 ± 36	-1574 ± 77	-805 ± 87	-758 ± 69	-70 ± 19	-52.9 ± 8.9			
R-Square	0.99939									
Adj. R- Square	0.99938									

Table S3. Accuracy of deconvolution model for F/0.5LA.

Figure S6. Deconvolution of 1200-920 cm⁻¹ range for F/bet:LA.

Model	Gauss										
Equation	$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$										
	Peak 1	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak									
y_0		100 ± 0									
Xc	1126.4 ± 0.1	1081.5 ± 0.1	1032.8 ± 0.1	1001.8 ± 0.1	978.5 ± 0.1	954.3 ± 0.1	931.7 ± 0.1				
W	27.9 ± 0.1	43.7 ± 0.3	29.9 ± 0.3	21.8 ± 0.5	$\begin{array}{c} 17.5 \pm \\ 0.3 \end{array}$	$\begin{array}{c} 15.6 \pm \\ 0.3 \end{array}$	$\begin{array}{c} 17.3 \pm \\ 0.1 \end{array}$				
А	-743 ± 4	-1181 ± 8	-706 ± 9	-220 ± 8	-196 ± 5	-113 ± 2	-229.1 ±				
R-Square	0.99959										
Adj. R- Square	0.99959										

Table S4. Accuracy of deconvolution model for F/bet:LA.

Figure S7. Deconvolution of 1200-840 cm⁻¹ range for F/bet:LA mix.

Model	Gauss									
Equation	$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$									
	Peak 1	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 Peak 7 Peak 8								
y_0		100 ± 0								
Xc	1127.7 ± 0.0	1079.3 ± 0.1	1030.5 ± 0.1	1001.1 ± 0.2	978.7 ± 0.2	$\begin{array}{c} 954.9 \pm \\ 0.1 \end{array}$	932.7 ± 0.1	$\begin{array}{c} 893.1 \pm \\ 0.1 \end{array}$		
w	25.6 ± 0.1	43.9 ± 0.3	33.7 ± 0.3	19.8 ± 0.5	$\begin{array}{c} 20.0 \pm \\ 0.4 \end{array}$	15.7± 0.3	18.6±0.1	17.9 ± 0.1		
А	-762 ± 4	-1654 ± 10	-1125 ± 15	-292 ± 14	-401 ± 12	-170 ± 5	-364 ± 3	-424 ± 1		
R-Square	0.99971									
Adj. R- Square		0.99971								

Table S5. Accuracy of deconvolution model for F/bet:LA phys. mix.

Figure S8. Deconvolution of 1200-840 cm⁻¹ range for F/ChCl:LA.

Model	Gauss								
Equation	$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$								
	Peak 1 Peak 2 Peak 3 Peak 4 Peak					Peak 6			
y ₀	100 ± 0								
X _c	$1126.5 \pm 0.0 \qquad 1082.8 \pm 0.1 \qquad 1043.2 \pm 0.0 \qquad 1004.0 \pm 0.0 \qquad 952.9 \pm 0.0 \qquad 922.1 = 0.0 \qquad 922.1 \pm 0.0 \qquad 922.1 = 0.$								
W	24.6 ± 0.1 26.5 ± 0.1 32.1 ± 0.2 23.2 ± 0.2 19.1 ± 0.0 16.6 ± 0.0								
А	$-891 \pm 3 \qquad -948 \pm 5 \qquad -972 \pm 7 \qquad -333 \pm 4 \qquad -669 \pm 2 \qquad -134 \pm 2$								
R-Square	0.99921								
Adj. R-Square	0.99920								

Table S6. Accuracy of deconvolution model for F/ChCl:LA .

Figure S9. Deconvolution of 1200-840 cm⁻¹ range for F/ChCl:LA mix.

Model	Gauss								
Equation	$y = y_0 + \left(\frac{A}{w * \sqrt{\frac{\pi}{2}}}\right) * e^{\left(-2 * \left(\frac{x - x_c}{w}\right)^2\right)}$								
	Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peal								
y ₀	98.9 ± 0								
X _c	$1126.5 \pm 0.0 \qquad 1082.8 \pm 0.1 \qquad 1040.7 \pm 0.1 \qquad 998.6 \pm 0.3 \qquad 952.7 \pm 0.0 \qquad 922.2 \pm 0.0$								
W	26.6 ± 0.1 28.9 ± 0.2 44.4 ± 0.9 28.0 ± 0.3 20.4 ± 0.1 20.1 ± 0.3								
А	$-883 \pm 5 \qquad -1123 \pm 23 \qquad -1865 \pm 39 \qquad -522 \pm 19 \qquad -744 \pm 3 \qquad -179 \pm 3$								
R-Square	0.99905								
Adj. R-Square	0.99903								

Table S7. Accuracy of deconvolution model for F/ChCl:LA mix.

Figure S10. Gauss Curve equation parameters explanation.

Figure S11. TGA graphs of the bet:LA NaDES (top) and the ChCl:LA NaDES (down).

Figure S12. TGA-MS of F/AA.

Figure S13. TGA-MS of F/Tween.

Figure S14. TGA-MS of F/0.5LA

Figure S15. TGA-MS of F/bet:LA NaDES

Figure S16. TGA/MS of F/bet:LA mix

Figure S17. TGA-MS of F/ChCl:LA NaDES

Figure S18. TGA-MS of F/ChCl:LA mix

Figure S19. TGA-MS of chitosan

Figure S20. TGA of acetic acid.

Figure S21. TGA-MS of lactic acid.

Figure S22. TGA-MS of betaine.

Figure S23. TGA-MS of choline chloride.