Unveiling the active isomer of cycloalanopine, a cyclic opine from Lactobacillus rhamnosus

 LS8, through synthesis and analog productionIsaac Antwi, ${ }^{[a]}$ Sorina Chiorean, ${ }^{[a]}$ Marco J. van Belkum ${ }^{[a]}$ and John C. Vederas* ${ }^{[a]}$
${ }^{[a]}$ Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G $2 G 2$
*Corresponding author: Prof. John C. Vederas, 780-492-5475, john.vederas@ualberta.ca

Table of Contents

General synthetic methods S2
Biological assays. S3
Plausible mechanism for cyclization S4
Synthetic procedures S5
Supplementary references. S34
Spectra. S35

General synthetic procedures

Reactions involving air or moisture sensitive reagents were conducted under a positive pressure of argon in flame-dried glassware. Commercially available solvents and chemicals were supplied from Sigma-Aldrich and used as received unless otherwise stated. Anhydrous solvents required were dried according to the procedures outlined in Perrin and Armarego. ${ }^{1}$ Removal of solvent was performed under reduced pressure below $40{ }^{\circ} \mathrm{C}$ using a Büchi rotary evaporator. All reactions and fractions from column chromatography were monitored by thin layer chromatography (TLC). Analytical TLC was done on glass plates $(5 \times 1.5 \mathrm{~cm})$ pre-coated $(0.25$ mm) with silica gel (normal SiO_{2}, Merck 60 F 254). Compounds were visualized by exposure to UV light and/or by exposing the plates to permanganate $\left(\mathrm{KMnO}_{4}: \mathrm{K}_{2} \mathrm{CO}_{3}: \mathrm{NaOH}: \mathrm{H}_{2} \mathrm{O}, 1.5 \mathrm{~g}: 10\right.$ g: $0.12 \mathrm{~g}: 200 \mathrm{~mL}$) solution, followed by heating. Flash chromatography was performed on silica gel (EM Science, 60 Å pore size, 230-400 mesh).

Compound Characterization

Optical rotations were measured on a Perkin Elmer 241 polarimeter with a microcell ($10 \mathrm{~cm}, 1$ mL) at $25^{\circ} \mathrm{C}$. Infrared spectra (IR) were recorded on a Nicolet Magna 750. Cast film refers to the evaporation of a solution on a NaCl plate. Nuclear magnetic resonance (NMR) spectra were obtained on Varian Inova 500 or 700 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR chemical shifts are reported in parts per million (ppm) using the residual proton resonance of solvents as reference: $\mathrm{CDCl}_{3} \delta$ 7.26, DMSO- $\mathrm{d}_{6} \delta 2.50$, or $\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta 5.32 .{ }^{13} \mathrm{C}$ NMR chemical shifts are reported relative to $\mathrm{CDCl}_{3} \delta 77.1$, DMSO-d ${ }_{6} \delta 39.5$, or $\mathrm{CD}_{2} \mathrm{Cl}_{2} \delta 53.8$. Mass spectra were recorded on a Kratos AEIMS-50 (high resolution, electron impact ionization (EI)) or an Agilent Technologies 6220
oaTOF instrument equipped with +ve and -ve ion ESI ionization source, and full-scan MS (high resolution analysis) with two-point lock mass correction operating mode. The instrument inlet was an Agilent Technologies 1200 SL HPLC system.

Biological assays

Spot-on-lawn assays were performed to determine the antibacterial activity of the various opine analogs. Salmonella typhimurium, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa were grown in Luria broth medium at $37^{\circ} \mathrm{C}$. Enterococcus faecalis and Listeria monocytogenes were grown in All Purpose Tween medium at $25^{\circ} \mathrm{C}$, whereas Staphylococcus aureus was grown in Tryptic Soy Broth medium at $25^{\circ} \mathrm{C}$. Overnight cultures were used to inoculate 5 mL of soft agar (0.75% agar) containing the appropriate medium and poured onto hard agar media (1.5\% agar) plates.

Compounds to be tested for inhibitory activity were dissolved in MQ- $\mathrm{H}_{2} \mathrm{O}$ or DMSO and various concentrations were made by series of two-fold dilution of the opine stock solutions. An aliquot of $10 \mu \mathrm{~L}$ from each concentration was spotted onto the plates and, after drying, plates were incubated overnight at the appropriate temperature. Minimum inhibitory concentration was determined from triplicates of this assay based on inhibited growth observed at the location of opine solution spotting.

Plausible mechanism for the cyclization

Scheme S1: Plausible mechanism for the cyclization of bishydrazides.

Synthetic Procedures

Methyl (S)-2-(tosyloxy)propanoate (10a)

10a

This known compound was synthesized following a literature protocol ${ }^{2}$ to give the final product as a pale yellow oil $(30.5 \mathrm{~g}, 96 \%) . \mathrm{R}_{\mathrm{f}}=0.34$ in 10% EtOAc in hexanes; $[\alpha]_{\mathrm{D}}{ }^{25}=-29.59(c 1.00$, $\left.\mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2996, 2956, 1761, 1595, 1190, 1176, 1082, $664 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.79(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6, \mathrm{H} 11), 7.36(\mathrm{~d}, J=7.93 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7, \mathrm{H} 10), 4.96(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 3.67(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 1), 2.49(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 9), 1.51(\mathrm{~d}, J=6.98 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 169.5(\mathrm{C} 2)(\mathrm{C} 5), 145.1$ (C5), 133.4 (C8), 130.3 (C7, C10), 127.9 (C6, C11), 74.1 (C3), 52.6 (C1), 21.7 (C9), 18.4 (C4); HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NNaOS}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 281.0454, found 281.0453.

Methyl (R)-2-(tosyloxy)propanoate (10b)

10b

Compound 10b was prepared following the same method as described for $\mathbf{1 0} \mathbf{a}^{2}$ to give the final product as a pale yellow oil (30.5 g, 96\%). $\mathrm{R}_{\mathrm{f}}=0.38$ in $10 \% \mathrm{EtOAc}$ in hexanes; $[\alpha]_{\mathrm{D}}{ }^{25}=27.87$ (c $\left.1.00, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cast) $2930,2850,1759,1465,1368,1180,1085,820,555 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.79$ (d, $J=7.93 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 6 / \mathrm{H} 11$), 7.33 (d, $J=7.93 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$, H10), 4.93 (q, $J=7.01 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$), 3.64 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H} 1$), 2.43 (s, $3 \mathrm{H}, \mathrm{H} 9$), 1.48 (d, $J=7.01 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 169.5(\mathrm{C} 2), 145.2(\mathrm{C} 5), 133.3(\mathrm{C} 8), 129.8(\mathrm{C} 7, \mathrm{C} 10), 127.9$ (C6, C11), 74.1 (C3), 52.6 (C1) 21.6 (C9), 18.3 (C4); HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NaO}_{5} \mathrm{~S}_{2}$ $\left[_{\mathrm{M}+\mathrm{Na}]^{+}}\right.$281.0454, found 281.0453.

Dimethyl 2,2'-azanediyl(2R,2'R)-dipropionate (2a)

2a

This known compound ${ }^{3}$ was synthesized via an alternative route. To a solution of D-alanine methyl ester hydrochloride ($5.0 \mathrm{~g}, 35.8 \mathrm{mmol}$) in $\mathrm{MeCN}(30 \mathrm{~mL})$ was added $\mathrm{NaHCO}_{3}(6.0 \mathrm{~g}$, $71.6 \mathrm{mmol})$ and stirred for 1 h at room temperature. Compound $\mathbf{1 0 a}(9.2 \mathrm{~g}, 35.8 \mathrm{mmol})$ in MeCN $(10 \mathrm{~mL})$ was added and reaction stirred under reflux for 12 h . TLC analysis of reaction mixture (30% EtOAc in hexanes, $\mathrm{R}_{\mathrm{f}}=0.33$) showed completion of reaction. The reaction mixture was allowed to cool to room temperature, filtered and the filtrate was concentrated in vacuo to give a pale yellow oil. The crude compound was purified by column chromatography $\left(\mathrm{SiO}_{2}, 40 \%\right.$ EtOAc in hexanes), yielding the product as a pale yellow oil $(6.2 \mathrm{~g}, 91 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=48.91(c 1.00$, CHCl_{3}) $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cast) 3454, 3341, 2981, 2954, 2876, 1737, 1453, 1374, 1202, 1095, 983, $743, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 3.71(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 8), 3.41(\mathrm{q}, J=7.03 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 5)$ $1.31(\mathrm{~d}, J=7.03 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.5(\mathrm{C} 2, \mathrm{C} 7), 55.1(\mathrm{C} 3$, C5), 51.9 (C1, C8), $19.3(\mathrm{C} 4, \mathrm{C} 6)$; HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 190.1074$, found 190.1072.

(2R,2'R)-2,2'-azanediyldi(propanehydrazide) (6a)

$6 \mathbf{a}$

This new compound was synthesized following literature procedure. ${ }^{4}$ To a solution of $\mathbf{2 a}(3.0 \mathrm{~g}$, $15.9 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added hydrazine monohydrate $(1.5 \mathrm{~mL}, 31.8 \mathrm{mmol})$ and stirred for 12 h . A white precipitate formed and was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 20 \mathrm{~mL})$, and dried to give a white solid which was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give the product as white powder (2.8 g, 93\%). $[\alpha]_{\mathrm{D}}{ }^{25}=37.25(c 1.00, \mathrm{MeOH})$; IR (MeOH, cast) 3301, 3208, 3041, 2991, 2979, 1653, 1534, 1322, 971, 689, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 500 \mathrm{MHz}$) $\delta 8.92$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 2$, H10), 4.15 (s, 4H, H1, H11), 3.31 (s, 1H, H6), 2.95 (q, $J=7.03 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 7$) 1.28 (d, $J=$ $7.03 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 5, \mathrm{H} 8) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{6}-\mathrm{d}_{6}, 125 \mathrm{MHz}$) $\delta 173.3$ (C3, C9), 54.7 (C4, C7), 19.6 (C5, C8); HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 190.1299$, found 190.1275.

(4R,6R)-4,6-dimethyl-1,2,5-triazepane-3,7-dione (1a)

$1 \mathbf{1 a}$

This new compound was synthesized following literature procedure. ${ }^{5}$ To a solution of $\mathbf{6 a}(1.2 \mathrm{~g}$, $6.3 \mathrm{mmol})$ in dry $\mathrm{MeCN}(5 \mathrm{~mL})$ was added $\operatorname{PhI}(\mathrm{OAc})_{2}(2.1 \mathrm{~g}, 6.3 \mathrm{mmol})$ in four portions. The reaction became exothermic with the evolution of gas. After stirring for 10 min the reaction became homogeneous and stirring was continued for additional 20 min at room temperature. TLC monitoring of the reaction $\left(10 \% \mathrm{MeOH}\right.$ in EtOAc, $\left.\mathrm{R}_{\mathrm{f}}=0.41\right)$ showed completion. The solvent was reduced in vacuo to a volume of about 1 mL and the crude was purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, yielding the product as a yellow solid $(0.89 \mathrm{~g}, 90$ $\%) .[\alpha]_{\mathrm{D}}{ }^{25}=43.23$ (c 0.89, MeOH); IR (MeOH, cast) 3354, 2991, 2944, 2843, 1714, 1423, 1109, $1056,755, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 4.06(\mathrm{q}, J=7.02 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 6) 1.51(\mathrm{~d}, J=7.02$ $\mathrm{Hz}, \mathrm{H} 4, \mathrm{H} 7) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 174.9(\mathrm{C} 2, \mathrm{C} 8), 51.2$ (C3, C6), 16.1 (C4, C7); HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$158.0924, found 158.0926.

Methyl ((R)-1-methoxy-1-oxopropan-2-yl)-L-alaninate (2b)

2b

This known compound ${ }^{3}$ was synthesized using the same method as described for 2a. After purification by column chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$ in hexanes $)$, the product was obtained as a yellow oil $(6.8 \mathrm{~g}, 92 \%) . \mathrm{R}_{\mathrm{f}}=0.41$ in $30 \% \mathrm{EtOAc}$ in hexanes). $[\alpha]_{\mathrm{D}}{ }^{25}=0.00(c 1.00$, $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cast) 3461, 3335, 2981, 2954, 2873, 1740, 1453, 1376, 1209, 1056, 982, $755, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.70(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 8), 3.41(\mathrm{q}, J=7.02 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 5)$ $1.31(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.2(\mathrm{C} 2, \mathrm{C} 7), 54.4(\mathrm{C} 3)$, 51.8 (C5), 18.7 (C4, C6); HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$190.1074, found 190.1081.
(S)-2-(((R)-1-hydrazinyl-1-oxopropan-2-yl)amino)propanehydrazide (6b)

6b

This new compound was synthesized following the same method as described for $\mathbf{6 a} .{ }^{4}$ Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded the product as a white powder $(2.8 \mathrm{~g}, 93 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=0.03(c$ $1.00, \mathrm{MeOH})$; IR (MeOH, cast) 3301, 3208, 3041, 2991, 2979, 1653, 1534, 1322, 971, 689, cm^{-1};
${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta 8.93$ (s, 2H, H2, H10), 4.21 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 11$), 3.32 (s, 1H, H6), 3.01 (q, $J=7.02 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 9), 1.31(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 5, \mathrm{H} 8) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $125 \mathrm{MHz}) \delta 174.2(\mathrm{C} 3, \mathrm{C} 9), 54.9(\mathrm{C} 4, \mathrm{C} 7), 19.7(\mathrm{C} 5, \mathrm{C} 8)$; HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$190.1299, found 190.1300.
(4S,6R)-4,6-dimethyl-1,2,5-triazepane-3,7-dione (1b)

1b

This new compound was synthesized following the same method as described for the synthesis of $\mathbf{1 a} .{ }^{5}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, the product
was obtained as a yellow solid $(0.87 \mathrm{~g}, 88 \%) . \mathrm{R}_{\mathrm{f}}=0.48$ in $10 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=0.01(c$ $0.89, \mathrm{MeOH})$; IR (MeOH, cast) 3349, 2998, 2954, 2863, 1721, 1424, 1121, 1054, 746, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 3.14(\mathrm{q}, J=7.02 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 6) 1.21(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 7)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 176.4(\mathrm{C} 2, \mathrm{C} 8), 55.4(\mathrm{C} 3, \mathrm{C} 6), 18.8(\mathrm{C} 4, \mathrm{C} 7)$; HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$158.0924, found 158.0921.

Dimethyl 2,2'-azanediyl(2S,2'S)-dipropionate (2c)

2c

This known compound ${ }^{3}$ was prepared using the same method as described for the synthesis of 2a. After purification by column chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$ in hexanes $)$, the product was obtained as a yellow oil ($6.3 \mathrm{~g}, 94 \%$). $\mathrm{R}_{\mathrm{f}}=0.34$ in 30% EtOAc in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25}=-47.87(c$ 0.86, $\left.\mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3453, 3321, 2986, 2962, 2886, 1745, 1452, 1369, 1202, 1098, 986, 746, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 3.72(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 8), 3.42(\mathrm{q}, J=7.02 \mathrm{~Hz}, 2 \mathrm{H}$, H3, H5) $1.32(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.5(\mathrm{C} 2, \mathrm{C} 7), 55.0$ (C3), 51.9 (C5), 19.2 (C4, C6); HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 190.1074$, found 190.1082.
(2S,2'S)-2,2'-Azanediyldi(propanehydrazide) (6c)

6c

This new compound was synthesized following the same method as described for the synthesis of 6a. ${ }^{4}$ Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded the product as a white powder $(2.8 \mathrm{~g}, 94 \%)$. $[\alpha]_{\mathrm{D}}{ }^{25}=$ -36.98 (c 0.94, MeOH); IR (MeOH, cast) 3312, 3207, 3032, 2988, 2974, 1662, 1553, 1352, 963, $679, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta 9.11(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 10), 3.32(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 11), 3.13$ (q, $J=7.04 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 7$) 1.27 (d, $J=7.04 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 5, \mathrm{H} 8) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 125 \mathrm{MHz}$) $\delta 173.1(\mathrm{C} 3, \mathrm{C} 9), 54.5(\mathrm{C} 4, \mathrm{C} 7), 19.3(\mathrm{C} 5, \mathrm{C} 8) ;$ HRMS (EI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]{ }^{+}$ 190.1299, found 190.1301.
(4S,6S)-4,6-dimethyl-1,2,5-triazepane-3,7-dione (1c)

1 c

This new compound was synthesized following the method as described for the synthesis of $\mathbf{1 a} .{ }^{5}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, the product was
obtained as a yellow solid $(0.80 \mathrm{~g}, 86 \%) . \mathrm{R}_{\mathrm{f}}=0.42$ in $10 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=-43.21(c$ $0.92, \mathrm{MeOH}) ;$ IR (MeOH, cast) 3364, 2988, 2943, 2844, 1716, 1427, 1118, 1054, 753, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 4.06(\mathrm{q}, J=7.04 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 6) 1.52(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 7)$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 174.9(\mathrm{C} 2, \mathrm{C} 8), 51.2(\mathrm{C} 3, \mathrm{C} 6), 16.2(\mathrm{C} 4, \mathrm{C} 7)$; HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$158.0924, found 158.0927.

((R)-1-hydrazineyl-1-oxopropane-2-yl)-D-alanine (3a)

3a

This new compound was synthesized following literature procedure. ${ }^{7}$ A solution of $\mathrm{LiOH}(0.24$ $\mathrm{g}, 0.010 \mathrm{~mol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added to $\mathbf{2 a}(2.0 \mathrm{~g}, 0.010 \mathrm{mmol})$ and the mixture was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. The solvent was then removed, and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ were added. The aqueous layer was acidified with concentrated HCl to pH 3 and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over MgSO_{4}. The solvent was removed in vacuo to give the half acid as a light yellow oil $(1.5 \mathrm{~g})$ which was used in the next step without further purification. The half acid ($1.2 \mathrm{~g}, 0.0068 \mathrm{~mol}$) was dissolved in $\mathrm{MeOH}(10 \mathrm{~mL})$ and hydrazine monohydrate $(0.33 \mathrm{~mL}, 0.0068 \mathrm{~mol})$ was added and the reaction was stirred at room temperature for 6 h . After this time, a white precipitated formed which was filtered and washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 20 \mathrm{~mL})$. This solid was allowed to dry and was recrystallized
from $\mathrm{Et}_{2} \mathrm{O}$ to give the product as white powder $(0.92 \mathrm{~g}, 76 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=41.10(c 1.00, \mathrm{MeOH})$; IR (MeOH, cast) 3320, 2977, 1714, 1552, $1101 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 2.95(\mathrm{q}, J=7.03$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H} 2, \mathrm{H} 4) 1.31(\mathrm{~d}, J=7.03 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3), 1.28(\mathrm{~d}, J=7.03 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 5) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, $125 \mathrm{MHz}) \delta 175.3$ (C1), 170.3 (C6), 51.1 (C2), 49.1 (C4), 18.86 (C3), 17.6 (C5); HRMS (ESI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-} 174.0884$ found 174.0887.

Tert-butyl (R)-(1-hydrazineyl-1-oxopropan-2-yl)carbamate (4a)

4a

This known compound ${ }^{10}$ was synthesized following the same procedure as described for the synthesis of $6 \mathbf{a}$ to give the final product as a white powder (5.2 g, 95\%). $[\alpha]_{\mathrm{D}}{ }^{25}=36.55(c 0.94$, $\left.\mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cast) $3316,2979,1701,1671,1525,1169,1046,757, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right) \delta 8.93$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 7$), 4.09 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 9\right), 3.91$ ($\mathrm{q}, J=7.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 1.35 (s, 9H, H6), 1.12 (d, $J=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta 172.1$ (C1), 154.6 (C4), 77.8 (C5), 48.3 (C2), 28.1 (C6), 18.5 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{3}[\mathrm{M}+$ $\mathrm{Na}]^{+} 226.1162$, found 226.1165 .

Tert-butyl ((R)-1-(2-(S)-2-bromopropanoyl)hydrazineyl)-1-oxopropan-2-yl)carbamate (4)

This new compound was synthesized following the same procedure as described for the synthesis of $\mathbf{2 a}$ to give the final product as a white powder ($4.2 \mathrm{~g}, 77 \%$). $\mathrm{R}_{\mathrm{f}}=0.41$ in $30 \% \mathrm{EtOAc}$ in Hexanes. $[\alpha]_{\mathrm{D}}{ }^{25}=25.25$ (c 0.94, MeOH); IR (MeOH, cast) 3313, 2959, 1721, 1681, 1555, $1159,1041,755, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 4.52(\mathrm{q}, J=7.15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.14(\mathrm{q}, J$ $=6.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 1.68(\mathrm{~d}, J=6.80 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 1), 1.21(\mathrm{~d}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\right) \delta 171.1(\mathrm{C} 3), 167.4(\mathrm{C} 4), 154.9(\mathrm{C} 7), 80.5(\mathrm{C} 8), 49.3$ (C 5$), 41.3$ (C2), 28.3 (C9), 21.6 (C1), 17.5 (C6); HRMS (EI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 360.0528$, found 360.0529 .

(R)-1-(2-((S)-2-bromopropanoyl)hydrazineyl)-1-oxopropan-2-aminium (5)

5

This new compound was synthesized following literature protocol. ${ }^{6}$ To solution of compound 4 (4.2 g, 0.012 mol$)$ in $\mathrm{DCM}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added TFA (20 mL) and the reaction mixture was stirred for 4 h . The solvent was removed and coevaporated with toluene ($3 \times 50 \mathrm{~mL}$) to give compound 5 as a white solid $(2.7 \mathrm{~g}, 93 \%)$ which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{25}=$ 29.45 (c 0.94, MeOH); IR (MeOH, cast) 3316, 2979, 1701, 1671, 1525, 1169, 1046, 757, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO, 500 MHz$) \delta 4.59(\mathrm{q}, J=7.15 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 3.89(\mathrm{q}, J=6.80 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 1.68$ $(\mathrm{d}, J=6.80 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 1), 1.21(\mathrm{~d}, J=7.14 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 6) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 171.1$ (C3), 167.4 (C4), 154.9 (C7), 49.3 (C5), 41.3 (C2), 21. 6 (C1), 17.5 (C6); HRMS (EI) Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$238.0850, found 238.0852.

11a
12a
7a

Scheme S2: Synthetic scheme for the preparation of (R)-4-methyl-1,2,5-triazepane-3,7-dione

Methyl (2-methoxy-2-oxoethyl)-D-alaninate (11a)

Compound 11a was prepared using the same method as described for the synthesis of 2a. After purification by column chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$ in hexanes), the product was obtained as a yellow oil $(12.3 \mathrm{~g}, 88 \%)$. $\mathrm{R}_{\mathrm{f}}=0.21$ in $50 \% \mathrm{EtOAc}$ in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25}=27.31(c$ $\left.1.00, \mathrm{CHCl}_{3}\right) ;$ IR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3623,3342,2955,1739,1437,1205,1157,978,754, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.70(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 7), 3.47-3.33(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 5) 1.32(\mathrm{~d}, J=7.02$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 175.1(\mathrm{C} 2), 172.2(\mathrm{C} 6), 55.8(\mathrm{C} 3), 51.9(\mathrm{C} 1), 51.8$ (C7), 48.8 (C5), 18.7 (C4); HRMS (ESI) Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$176.0917, found 176.0920.

(R)-2-((2-hydrazineyl-2-oxoethyl)amino)propanehydrazide (12a)

12a

This new compound was synthesized following the method same method as described for the synthesis of 6a. ${ }^{4}$ Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded the product as a white powder, (10.9 g , $89 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=26.81(c 0.90, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{MeOH}$, cast) 3424, 3332, 3206, 3031, 2988, 2971, $1714,1550,1358,958,674, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 500 \mathrm{MHz}\right) \delta 3.01-2.98(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4$, H7), $1.09(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 5) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{\mathrm{d}}^{6}, 125 \mathrm{MHz}\right) \delta 173.2(\mathrm{C} 3), 170.1$ (C8), 55.8 (C4), 49.2 (C7), 18.8 (C5); HRMS (ESI) Calcd for $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 176.1142$, found 176.1141.
(R)-4-methyl-1,2,5-triazepane-3,7-dione (7a)

7a

This new compound was synthesized following the same method as described for the synthesis of 1a. ${ }^{5}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, the product
was obtained as a white solid $(1.79 \mathrm{~g}, 67 \%) . \mathrm{R}_{\mathrm{f}}=0.4$ in $20 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=25.5(c$ $1.00, \mathrm{MeOH}) ;$ IR (MeOH, cast) 3354, 2978, 2953, 2832, 1721, 1422, 1128, 1051, 763, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 500 \mathrm{MHz}\right) \delta 3.28-3.24(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 6) 1.24(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 173.2(\mathrm{C} 2), 170.1(\mathrm{C} 7), 55.8(\mathrm{C} 3), 49.2(\mathrm{C} 6), 18.8(\mathrm{C} 4) ;$ HRMS (ESI) Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$144.0697, found 144.0694.

Methyl (2-methoxy-2-oxoethyl)-L-alaninate (11b)

Compound 11b was prepared using the same method as described for the synthesis of 2a. After purification by column chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$ in hexanes $)$, the product was obtained as a light-yellow oil (12.8 g, 90\%). $\mathrm{R}_{\mathrm{f}}=0.28$ in $50 \% \mathrm{EtOAc}$ in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25}=27.31$ (c 1.00, $\left.\mathrm{CHCl}_{3}\right)$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cast) $3623,3342,2955,1739,1437,1205,1157,978,754, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.63(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 7), 3.38-3.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 6) 1.25(\mathrm{~d}, J=7.03$, $3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.0(\mathrm{C} 2), 172.1$ (C7), 55.8 (C3), $51.8(\mathrm{C} 1), 51.7(\mathrm{C} 8)$, 48.8 (C7), 18.6 (C4); HRMS (ESI) Calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}$176.0917, found 176.0921.

(S)-2-((2-hydrazineyl-2-oxoethyl)amino)propanehydrazide (12b)

12b

This new compound was synthesized following the same method as described for the synthesis of 6a. ${ }^{4}$ Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded the product as a white powder $(8.9 \mathrm{~g}, 89 \%) .[\alpha]_{\mathrm{D}}{ }^{25}=$ 26.81 (c 0.90, MeOH); IR (MeOH, cast) 3434, 3312, 3207, 2998, 2974, 1721, 1554, 1348, 953, $676, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 500 \mathrm{MHz}\right) \delta 3.04-2.98(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 7) 1.07(\mathrm{~d}, J=7.02,3 \mathrm{H}$, H5); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 124 \mathrm{MHz}\right) \delta 174.2(\mathrm{C} 3), 171.1(\mathrm{C} 8), 55.7(\mathrm{C} 4), 49.5$ (C7), 18.6 (C5); HRMS (ESI) Calcd for $\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$176.1142, found 176.1140.

(S)-4-methyl-1,2,5-triazepane-3,7-dione (7b)

7b

This new compound was synthesized following the method as described for 1a. ${ }^{5}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, the product was obtained as a white solid (1.3 g, 72\%). $\mathrm{R}_{\mathrm{f}}=0.51$ in $20 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=25.5(c 1.00, \mathrm{MeOH})$;

IR (MeOH, cast) 3352, 2988, 2962, 2835, 1719, 1411, 1127, 1054, 765, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, $500 \mathrm{MHz}) \delta 3.26-3.22(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 6) 1.23(\mathrm{~d}, J=7.02,3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right)$ $\delta 173.4(\mathrm{C} 2), 170.5(\mathrm{C} 7), 55.9(\mathrm{C} 3), 49.4(\mathrm{C} 6), 18.7(\mathrm{C} 4) ;$ HRMS (EI) Calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}$ $+\mathrm{H}]^{+}$144.0697, found 144.0695.
\mathbf{N}^{ε}-benzyloxycarbonyl-L-lysine methyl ester hydrochloride (14)

14

This known compound was synthesized following literature protocol. ${ }^{8}$ The compound was lyophilized to afford 14 as a white solid (quant.). $[\alpha]_{\mathrm{D}}{ }^{25}=15.62(c 1.00, \mathrm{MeOH})$; IR $(\mathrm{MeOH}$, cast) $3309,3032,2951,1749,1697,1527,1253,1135,776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, (DMSO-d ${ }_{6}, 500$ MHz) $\delta 8.65$ (s, 1H, H8), 7.31 - 7.27 (m, 5H, H12, H13, H14, H15, H16), 5.01 (s, 2H, H10), 4.02 (t, $J=6.25,1 \mathrm{H}, \mathrm{H} 3), 3.8(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 1), 3.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 17), 2.98-2.961(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 7), 1.81-$ 1.78 (m, $2 \mathrm{H}, \mathrm{H} 4$), $1.41-1.38$ (m, 4H, H5, H6), $1.28-1.261(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 125 \mathrm{MHz}\right) \delta 169.9(\mathrm{C} 2), 156.1(\mathrm{C} 9), 137.2$ (C11), 128.3 (C13, C15), 127.7 (C12, C16, 127.6 (C14, 65.1 (C10), 52.6 (C1), 51.7 (C7), 29.6 (C4), 28.7 (C7), 21.4 (C5); HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 295.1580$ found 295.1581 .

Scheme S3: Synthetic scheme for the preparation of (4S,6R)-4-(4-aminobutyl)-6-methyl-1,2,5-triazepane-3,7-dione.

Cl^{-}
14

This new compound was synthesized following the same method as described for synthesis of 2a. After purification by column chromatography $\left(\mathrm{SiO}_{2}, 40 \% \mathrm{EtOAc}\right.$ in hexanes $)$, the product was obtained as a light-yellow oil (10.3 g, 90\%). $\mathrm{R}_{\mathrm{f}}=0.60$ in $50 \% \mathrm{EtOAc}$ in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25}=$ 3.91 (c $\left.1.50, \mathrm{CHCl}_{3}\right)$; IR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3336,2950,1731,1527,1239,1057,697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 15, \mathrm{H} 16, \mathrm{H} 17, \mathrm{H} 18, \mathrm{H} 19), 5.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 13), 3.64$ (s, $6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 21), 3.23(\mathrm{q}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 3.19(\mathrm{t}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 3.17-3.11(\mathrm{~m}, 2 \mathrm{H}$, H9), 1.67 (td, $J=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$), $1.51-1.45$ (m, 2H, H8), $1.40-1.34$ (m, 2H, H10), $1.27(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.1$ (C2), 175.0 (C20), 156.4 (C12), 136.7 (C14), 129.6 (C16), 128.5 (C18), 128.0 (C17), 127.2 (C15, C19), 66.5 (C13), 59.2 (C6), 55.0 (C5), 51.9 (C1), 51.8 (C21), 40.8 (C10), 33.0 (C7), 29.6 (C9), 22.7 (C8), 18.6 (C4); HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 381.2020$, found 381.2016.

Benzyl((S)-6-hydrazineyl-5-(((R)-1-hydrazineyl-1-oxopropan-2-yl)amino)-6-

 oxohexyl)carbamate (16)

16

This new compound was synthesized following the same method as described for the synthesis of $\mathbf{6 a} \cdot{ }^{4}$ Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ afforded the product as a white powder $(4.47 \mathrm{~g}, 89 \%)$. $[\alpha]_{\mathrm{D}}{ }^{25}$ $=3.95(c 1.40, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{MeOH}$, cast $) 3445,3339,2961,1741,1537,1236,1057,695 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 700 \mathrm{MHz}\right) \delta 7.36-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 12, \mathrm{H} 13, \mathrm{H} 14, \mathrm{H} 15, \mathrm{H} 16), 4.99$ (s, 2H, H10), 3.01 - 2.98 (m, 2H, H2, H4), 1.67 (td, $J=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5), 1.51-1.45$ (m, 6H, H6, H7, H8), 1.27 (d, $J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3$); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 125 \mathrm{MHz}$) $\delta 173.2$ (C10, 172.8 (C12), 156.1 (C9), 137.2 (C11), 128.3 (C13, C15), 127.7 (C12, C16), 127.6 (C14), 65.0 (C10), 58.6 (C4), 54.2 (C2), 40.1 (C8), 32.8 (C5), 29.3 (C7), 22.5 (C6), 18.5 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$381.2245, found 381.2243.

Benzyl (4-((4S,6R)-6-Methyl-3,7-dioxo-1,2,5-triazepan-4-yl)butyl)carbamate (17)

17

This new compound was prepared using the same method described for the synthesis of $\mathbf{1 a} .{ }^{5}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, the product was obtained as a yellow solid $(0.8 \mathrm{~g}, 73 \%) . \mathrm{R}_{\mathrm{f}}=0.6$ in $20 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=3.92$ (c 1.30, MeOH) ; IR (MeOH, cast) 3339, 2971, 1724, 1545, 1238, 1061, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 700$ MHz) $\delta 7.36-7.29$ (m, 5H, H10, H11, H12, H13, H14, H15), 4.99 (s, 2H, H9), 3.23 (q, $J=7.02$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2), 3.03-3.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 8), 1.47(\mathrm{td}, \mathrm{J}=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5), 1.38-1.36$ (m, 2H, H6), $1.24-1.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 7), 1.10(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right)$ $\delta 173.3$ (C1), 172.7 (C17), 156.4 (C18), 137.6 (C10), 128.4 (C12, C14), 127.8 (C13), 127.6 (C11, C15), 65.2 (C9), 58.8 (C4), 54.3 (C2), 40.4 (C8), 32.6 (C5), 29.4 (C7), 22.7 (C6), 18.6 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 371.1690$, found 371.1689.

(4S,6R)-4-(4-aminobutyl)-6-methyl-1,2,5-triazepane-3,7-dione (8)

8

This new compound was synthesized following literature procedure. ${ }^{9}$ A solution of $\mathbf{1 7}(0.5 \mathrm{~g}, 1.4$ $\mathrm{mmol})$ in dry $\mathrm{MeOH}(10 \mathrm{~mL})$ was degassed by flushing with argon for 5 min and palladium on carbon $10 \% \mathrm{w} / \mathrm{w}(640 \mathrm{mg})$ was added. The reaction was stirred under hydrogen atmosphere at room temperature for 2.5 h . The reaction was filtered through a pad of Celite and washed with $\mathrm{MeOH}(10 \mathrm{~mL})$ and the solvent was removed in vacuo and the crude was purified by column chromatography $\left(\mathrm{SiO}_{2}, 10 \% \mathrm{MeOH}\right.$ in EtOAc$)$, yielding the product as a yellow solid $(0.36 \mathrm{~g}$, $84 \%) . \mathrm{R}_{\mathrm{f}}=0.4$ in $10 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=4.10(c 1.60, \mathrm{MeOH})$; IR (MeOH, cast) 3339, 2971, 1724, 1545, 1238, 1061, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 700 \mathrm{MHz}\right) \delta 3.96(\mathrm{t}, J=7.04 \mathrm{~Hz} .1 \mathrm{H}$, H4), $3.66(\mathrm{q}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 8), 1.47(\mathrm{td}, J=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}$, H5), $1.38-1.36$ (m, 2H, H6), $1.24-1.22$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H} 7$), 1.10 (d, $J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}$) $\delta 164.7(\mathrm{C} 1), 164.7(\mathrm{C} 9), 60.3(\mathrm{C} 4), 55.7(\mathrm{C} 2), 41.1(\mathrm{C} 8), 29.3(\mathrm{C} 5), 27.7(\mathrm{C} 7)$, 22.1 (C6), 17.5 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 215.1430$ found 215.1434.

\mathbf{N}^{ε}-benzyloxycarbonyl-D-lysine methyl ester hydrochloride (18)

18

This known compound was synthesized using the same method as described for the synthesis of 14 to give the final product as white powder (quant.). $[\alpha]_{\mathrm{D}}{ }^{25}=-14.32$ (c $1.00, \mathrm{MeOH}$); IR (MeOH, cast) 3307, 3034, 2949, 1749, 1697, 1528, 1252,1135, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR, (DMSO-d ${ }_{6}$, $700 \mathrm{MHz}) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 8), 7.37-7.26$ (m, 5H, H12, H13, H14, H15, H16), 4.99 (s, 2H, H10), $3.95(\mathrm{t}, J=6.25,1 \mathrm{H}, \mathrm{H} 3), 3.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 1), 3.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H} 17), 2.98-2.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 7)$, $1.81-1.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 4), 1.42-1.38(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 5, \mathrm{H} 6), 1.28-1.261(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta 169.9(\mathrm{C} 2), 156.1$ (C9), 137.2 (C11), 128.3 (C13, C15), 127.7 (C12, C16, 127.6 (C14, 65.1 (C10), 52.6 (C1), 51.7 (C7), 29.6 (C4), 28.7 (C7), 21.4 (C5); HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 295.1580$ found 295.1579.

18

19

This new compound was synthesized following the same method as described for the synthesis of $2 \mathbf{a}$ to give the final product as a light-yellow oil $(10.6 \mathrm{~g}, 92 \%) . \mathrm{R}_{\mathrm{f}}=0.56$ in $50 \% \mathrm{EtOAc}$ in hexanes. $[\alpha]_{\mathrm{D}}{ }^{25}=18.58\left(c 1.50, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cast) $3346,2950,1730,1528,1244,1202$, 1053, $776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 700 \mathrm{MHz}\right) \delta 7.21-7.16(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 15, \mathrm{H} 16, \mathrm{H} 17, \mathrm{H} 18, \mathrm{H} 19)$, 5.19 (s, 2H, H13), 3.59 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H} 1, \mathrm{H} 21$), $3.25(\mathrm{q}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3), 3.19(\mathrm{t}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H}$, H3), $3.17-3.11$ (m, 2H, H9), 1.67 (td, $J=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 7$), $1.57-1.55$ (m, 2H, H8), $1.30-1.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 1.19(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.1$ (C2), 175.1 (C20), 156.4 (C12), 136.7 (C14), 129.6 (C16), 128.5 (C18), 128.0 (C17), 127.2 (C15, C19), 66.5 (C13), 59.2 (C6), 55.0 (C5), 51.9 (C1), 51.8 (C21), 40.8 (C10), 32.9 (C7), 29.6 (C9), 22.7 (C8), 19.0 (C4); HRMS (EI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$381.2020, found 381.2017.

Benzyl((R)-6-hydrazineyl-5-(((R)-1-hydrazineyl-1-oxopropan-2-yl)amino)-6-

 oxohexyl)carbamate (20)

20

This new compound was synthesized following the method as described for the synthesis of $6 \mathbf{a}^{4}$ to give the final product as a white powder $(4.51 \mathrm{~g}, 92 \%) . \%) .[\alpha]{ }_{\mathrm{D}}{ }^{25}=18.32(c 1.40, \mathrm{MeOH})$; IR (MeOH, cast) 3443, 3337, 2959, 1739, 1567, 1236, 1057, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}, 700$ $\mathrm{MHz}) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 12, \mathrm{H} 13, \mathrm{H} 14, \mathrm{H} 15, \mathrm{H} 16), 5.00(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 10), 3.02-2.98$ (m, 2H, H2, H4), 1.67 (td, $J=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5), 1.51-1.45$ (m, 6H, H6, H7, H8), 1.27 (d, $J=$ $7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta 173.2$ (C10), 172.8 (C12), 156.1 (C9), 137.2 (C11), 128.3 (C13, C15), 127.7 (C12, C16), 127.6 (C14), 65.0 (C10), 58.6 (C4), 54.2 (C2), 40.1 (C8), 32.8 (C5), 29.3 (C7), 22.5 (C6), 18.5 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{NaO}_{4}$ [M $+\mathrm{Na}]^{+} 403.2064$, found 403.2059.

Benzyl (4-((4R,6R)-6-methyl-3,7-dioxo-1,2,5-triazepan-4-yl)butyl)carbamate (21)

21

This new compound was synthesized following the same method as described for the synthesis of $\mathbf{1 a}$ h to give the final product as a white solid $(0.82 \mathrm{~g}, 75 \%) . \mathrm{R}_{\mathrm{f}}=0.5$ in $20 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=18.21(c 1.30, \mathrm{MeOH}) ;$ IR (MeOH, cast) 3339, 2971, 1724, 1545, 1238, 1061, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 700 \mathrm{MHz}\right) \delta 7.36-7.29$ (m, 5H, H10, H11, H12, H13, H14, H15), 4.99 (s, 2H, H9), 3.21 (q, J=7.02 Hz, 1H, H2), $3.04-3.01(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 4, \mathrm{H} 8), 1.44(\mathrm{td}, \mathrm{J}=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}$, 2H, H5), $1.38-1.36$ (m, 2H, H6), $1.24-1.22$ (m, 2H, H7), 1.10 (d, J $=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 173.3(\mathrm{C} 1), 172.7(\mathrm{C} 17), 156.4(\mathrm{C} 18), 137.6$ (C10), 128.4 (C12, C14), 127.8 (C13), 127.6 (C11, C15), 65.2 (C9), 58.8 (C4), 54.3 (C2), 40.4 (C8), 32.6 (C5), 29.4 (C7), 22.7 (C6), 18.6 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{NaO}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$371.1690, found 371.1688.

(4R,6R)-4-(4-aminobutyl)-6-methyl-1,2,5-triazepane-3,7-dione (9)

9

This new compound was synthesized following the same method as described for the synthesis of $\mathbf{8}^{9}$ to give the final product as a white solid $(0.32 \mathrm{~g}, 79 \%) . \mathrm{R}_{\mathrm{f}}=0.43$ in $10 \% \mathrm{MeOH}$ in EtOAc. $[\alpha]_{\mathrm{D}}{ }^{25}=20.10(c 1.60, \mathrm{MeOH}) ;$ IR (MeOH, cast) $3339,2971,1724,1545,1238,1061,698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 700 \mathrm{MHz}\right) \delta 3.96(\mathrm{t}, J=7.04 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 4), 3.66(\mathrm{q}, J=7.02 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (t, $J=7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 8), 1.47(\mathrm{td}, J=7.79 \mathrm{~Hz}, 7.30 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5), 1.38-1.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 6), 1.24-$ 1.22 (m, 2H, H7), $1.10(\mathrm{~d}, J=7.02 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, 125 \mathrm{MHz}\right) \delta 164.7(\mathrm{C} 1)$, 164.7 (C9), 60.3 (C4), 55.7 (C2), 41.1 (C8), 29.3 (C5), 27.7 (C7), 22.1 (C6), 17.5 (C3); HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 214.1430$ found 214.1438.

References

1. D. D. Perrin and W. L. F. Armarego. Purification of Laboratory Chemicals, $3^{\text {rd }}$ ed.; Pergamon Press: Oxford, 1988.
2. G. Zhu, R. Yao, H. Zhu and H. Wang, Biotechnol. Lett., 2012, 34, 709-715.
3. J. Li and Y. A. Sha, Molecules. 2008, 13, 1111-1119.
4. R. P. Rambabu, et al. Int. J. Chem. Sci., 2015, 13, 1383-1392.
5. O. Prakash, V. Sharma and A. Sadana, Synth.Commun., 1997, 27, 3371-3377.
6. D. M.Shendage, R. Froehlic and G. Haufe. Org. Lett., 2004, 6, 3675-3678.
7. G. Peng et al. Bioorg. Med. Chem., 2012, 20, 3865-3872.
8. L. Wang. et al. Nuc. Med. Biol., 2012, 39, 933-943.
9. G. Q. Song, F. Qin, X. F. Huang, X. Bing and B. Yang. Lett. Org. Chem., 2016, 13, 177180.
10. M. Jansen et al. J. Med. Chem., 2008, 51, 4430-4448.

emp $26.5 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, autoxeth probe
${ }^{13} \mathrm{C}-\mathrm{NMR}$

125.266 MHz C13(H1) 1 D in cdel3 (ref. to CDCl 13 @ 77.06 ppm)
temp $26.9 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, autoxdb probe

240	220	200	180	160	140	120	100	80	60	40	20	0

240	220	200	180	160	140	120	100	80	60	40	20

100.566 MHz C13(H1) 1 D in dmso (ref. to DMso @ 39.5 ppm)
$100.566 \mathrm{MHz} \mathrm{C} 13 \mathrm{HH1} 11 \mathrm{in} \mathrm{dmso} \mathrm{(ref}$.to DMSO @ 39.5
lemp $25.9 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, onenmr probe

lemp $26.5 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, autoxdb probe

100.540 MHz C13 $3 \mathrm{H1} 1 \mathrm{D}$ in dmso (ref. to DMSO © 39.5 ppm)
emp $26.5 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, autoxdb probe
${ }^{13} \mathrm{C}$-NMR

$150.868 \mathrm{MHz} \mathbf{C 1 3}\{\mathrm{H} 1\} 1 \mathrm{D}$ in d20 (ref. to external acetone @ 31.07 ppm)
temp $26.2 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, autoxid probe

240	220	200	180	160	140	120	100	80	60	40	20	0

temp $26.2 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, autoxid probe

125.685 MHz C13 $\mathrm{H}_{\mathrm{H} 1\}} 1 \mathrm{D}$ in cdel3 (ref. to CDC13 @ 77.06 ppm)
temp $27.7 \mathrm{C} \rightarrow$ actual temp $=\mathbf{2 7 . 0} \mathrm{C}$, colddual probe

240	220	200	180	160	140	120	100	80	60	40	20	0

$125.266 \mathrm{MHz} \mathrm{C13}$ (H1) 1 D in cdcl3 (ref. to $\mathrm{CDCl3}$ @ 77.06 ppm)
temp $26.9 \mathrm{C}>$ actual temp $=27.0 \mathrm{C}$, autoxdb probe

240	220	200	180	160	140	120	100	80	60	40	20	0	ppm

100.586 MHz C13(H1) 1 D in dmso (ref. to DMSO @ 39.5 ppm)
temp $25.9 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{C}$, onenmr probe

temp $27.5 \mathrm{C} \rightarrow$ actual temp $=27.0 \mathrm{c}$, coldid probe

Isaac, $1 \mathrm{~A}-3-173$
175.971 MHz C
temp $27.5 \mathrm{C}->$ actual temp $=27.0 \mathrm{C}$, coldid probe

