Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: Redox and biological implications

Renata G. Almeida,^{a1} Wagner O. Valença,^{a,b1} Luisa G. Rosa,^a Carlos A. de Simone,^c

Solange L. de Castro,^d Juliana M. C. Barbosa,^d Daniel P. Pinheiro,^e Carlos R. K. Paier,^e Guilherme G. C. de Carvalho,^e Claudia Pessoa,^e Marilia O. F. Goulart,^f Ammar Kharma,^{a,g} and Eufrânio N. da Silva Júnior^a*

^aInstitute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil; ^bCenter for the Development of Chemical Technologies, State University of Mato Grosso do Sul, Naviraí, 79950-000, MS, Brasil; ^cDepartment of Physics and Informatics, Institute of Physics, University of São Paulo, São Carlos, 13560-160, SP, Brazil; ^dOswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, 21045-900, RJ, Brazil; ^eDepartment of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, 60430-270, Brazil; ^fInstitute of Chemistry and Biotechnology, Federal University of Alagoas, CEP 57072-970, Maceió, AL, Brazil; ^gDivision of Bioorganic Chemistry, School of Pharmacy, University of Saarland D-66123 Saarbruecken, Germany.

> *E-mail: eufranio@ufmg.br* ¹*These authors contributed equally to this work*

Figure S2. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3a.

Figure S4. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound **3b**.

Figure S5. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3c.

Figure S6. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3c.

Figure S8. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3d.

Figure S10. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3e.

Figure S12. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3f.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 3g.

Figure S14. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3g.

Figure S16. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 3h.

Figure S18. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4a.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4b.

Figure S20. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4b.

Figure S22. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4c.

Figure S24. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4d.

Figure S25. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4e.

Figure S26. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4e.

Figure S28. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4f.

Figure S30. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4g.

Figure S31. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 4h.

Figure S32. ¹³C NMR spectrum (100 MHz, CDCl₃) of compound 4h.

Figure S33. ¹H NMR spectrum (200 MHz, CDCl₃) of compound 5b.

Figure S34. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 5b.

Figure S36. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 5c.

Figure S37. ¹H NMR spectrum (400 MHz, CDCl₃) of compound 5d.

Figure S38. ¹³C NMR spectrum (50 MHz, CDCl₃) of compound 5d.

Figure S39. Representative cyclic voltammograms of selected compounds belonging to class 1 (insert a), class 2, class 3 (compound 3a, insert b) and class 5 (compound 5b, insert c). Phosphate buffer 0.1 M (pH 7.4) + 30% methanol; glassy carbon electrode, *E* vs. Ag/AgCl reference electrode (SSE), 200 mV s⁻¹. Potential range: +1.0 V to -1.0 V. Anodic direction. E initial: 0 V.