Supporting Information

Rational Design, Synthesis and Testing of Novel Tricyclic Topoisomerase Inhibitors for the

Treatment of Bacterial Infections Part 1

R. Kirk ${ }^{a}$, A. Ratcliffe, G. Noonan, M. Uosis-Martin, D. Lyth, O. Bardell-Cox, J. Massam, P. Schofield, S. Hindley, D. Jones, J. Maclean, A. Smith, V. Savage, S. Mohmed, C. Charrier, A-M. Salisbury, E. Moyo, R. Metzger, N. ChalamJudge, J. Cheung, N. R. Stokes, S. Best, M. Craighead, R. Armer, A. Huxley

Index:

General Experimental Procedures
 S2-S3

Synthetic Procedures S4- S62
Antibacterial susceptibility testing protocols S63
References S63

Synthetic Procedures

General Information

All reactions were carried out using commercial materials and reagents without further purification unless otherwise noted. All reactions were monitored by thin layer chromatography (TLC). Visualization of the spots on TLC plates was achieved by UV light and by staining the TLC plates in potassium permanganate and charring with a heat gun, unless otherwise stated.

NMR spectral data was recorded on a LC Bruker AV400 using a 5 mm QNP probe or Bruker AVIII 400 Nanobay using a 5 mm BBFQ with z-gradients. Chemical shifts are expressed in parts per million values (ppm) and are designated as s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet); quint (quintet) or m (multiplet). Where appropriate, COSY and NOE experiments were carried out to aid assignment.

Chromatography was performed on a an ISCO using silica (normal phase or C18 (reverse phase; or by flash-column chromatography using silica gel (Fluorochem silica gel 60A 40-63 $\mu \mathrm{m})$.

LCMS methods

Method A: Instrument: Waters Acquity UPLC H-Class system; Column: Column: Gemini NX C18. $5 \mu \mathrm{~m}, 50 \times 2 \mathrm{~mm}$; eluent A : water, eluent B : acetonitrile, eluent $\mathrm{C}: 2$ vol $\%$ ammonia (35%) in water, eluent D: 2 vol \% formic acid in water; gradient: 0-4.0 min $5-95 \%$ B with A, 4.0-4.45 $\min 95 \%$ B, 4.45-4.5 $\min 95-5 \%$ B with A, 4.5-5.0 $\min 5 \%$ B; flow $1.0 \mathrm{ml} / \mathrm{min}$; injection volume: $10 \mu \mathrm{~L}$

Method B: Instrument: Waters Acquity UPLC H-Class system; Column: Waters XBridge $\mathrm{C} 18,5 \mu \mathrm{~m}, 50 \times 2.1 \mathrm{~mm}$; eluent A : water, eluent B : acetonitrile, eluent $\mathrm{C}: 2 \mathrm{vol} \%$ ammonia
(35%) in water, eluent D: 2 vol \% formic acid in water; gradient: $0-4.0 \mathrm{~min} 5-95 \%$ B with A, 4.0-4.45 $\mathrm{min} 95 \% \mathrm{~B}, 4.45-4.5 \mathrm{~min} 95-5 \%$ B with A, $4.5-5.0 \mathrm{~min} 5 \%$ B; flow $0.8 \mathrm{ml} / \mathrm{min}$; injection volume: $10 \mu \mathrm{~L}$

Method C: Instrument: Waters Acquity UPLC H-Class system; Column: Acquity BEH C18 1.7 $\mu \mathrm{m} 2.1 \times 50 \mathrm{~mm}$; eluent A: water, eluent B: acetonitrile, eluent C: 2 vol \% ammonia (35\%) in water, eluent D: 2 vol \% formic acid in water; gradient: 0-0.3 min $5 \% \mathrm{~B}, 0.3-2.0 \mathrm{~min} 5-95 \% \mathrm{~B}$ with A, 2.0-2.6 min 95-5\% B with A, 2.6-3 min 5% B; flow $0.6 \mathrm{ml} / \mathrm{min}$; injection volume: $2 \mu \mathrm{~L}$ Method D: Instrument: Waters Acquity UPLC H-Class system; Column: Column: YMC Triart-C18 $50 \times 2 \mathrm{~mm}$; eluent A: water, eluent B: acetonitrile, eluent C : $1 \mathrm{vol} \%$ formic acid in 50/50 water/acetonitrile; gradient: $0-4.0 \mathrm{~min} 0-95 \% \mathrm{~B}$ with $\mathrm{A}, 5 \% \mathrm{C}, 4.0-4.5 \mathrm{~min} 95 \% \mathrm{~B}$, 5% C throughout, 4.4-4.5 min 95-5\% B with A; flow $0.8 \mathrm{ml} / \mathrm{min}$; injection volume: $5 \mu \mathrm{~L}$ Method E: Instrument: Waters Acquity UPLC H-Class system; Column: Column: YMC Triart$\mathrm{C} 1850 \times 2 \mathrm{~mm}$; eluent A : water, eluent B : acetonitrile, eluent $\mathrm{C}: 1$ vol $\%$ formic acid in 50/50 water/acetonitrile; gradient: 0-2.0 min $95 \% A, 5 \% C, 2.0-12 \min 0-95 \% B$ with $A, 5 \% C$ throughout, $12-14 \min 95 \%$ B with 5% C; flow $0.8 \mathrm{ml} / \mathrm{min}$; injection volume: $5 \mu \mathrm{~L}$

S1: Synthesis of REDX04139

REDX04139-7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one
(a) Compound (2) 3-bromo-N-(1-methoxycyclopropyl)-2-methyl-aniline

To a stirring solution of 3-bromo-2-methyl-aniline ($14.6 \mathrm{~mL}, 118.25 \mathrm{mmol}$) in $\mathrm{MeOH}(200 \mathrm{~mL})$ was added acetic acid ($27.1 \mathrm{~mL}, 472.99 \mathrm{mmol}$). To the solution was added (1-ethoxycyclopropoxy)-trimethyl-silane ($28.5 \mathrm{~mL}, 141.9 \mathrm{mmol}$) dropwise at room temperature and the resulting reaction mixture was heated to reflux overnight. The mixture was concentrated in vacuo to obtain the title product as colourless oil in quantitative yield, which was used without further purification.

LC-MS (Method A) 256.3/258.3 [M+H] ${ }^{+}$; RT 2.85 min
(b) Compound (3) 3-bromo-N-cyclopropyl-2-methyl-aniline

To a solution of 3-bromo-N-(1-methoxycyclopropyl)-2-methyl-aniline ($31.0 \mathrm{~g}, 121.03 \mathrm{mmol}$) in THF (50 mL) was added borane THF complex ($242.1 \mathrm{~mL}, 242.06 \mathrm{mmol}$) dropwise at $0^{\circ} \mathrm{C}$ over 20 min . The resulting mixture was allowed to warm to room temperature, stirred for 3 h and then refluxed for 18 h . The reaction mixture was cooled to room temperature and carefully quenched with MeOH until bubbling stopped. Organic solvents were removed under reduced pressure. The residue was then poured into $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$.

The combined organic layers were washed with brine (50 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to give 3-bromo-N-cyclopropyl-2-methyl-aniline in quantitative yield. The product was used in the next step without further purification.

LC-MS (Method A) 226.3/228.3 [M+H] ${ }^{+}$; RT 3.07 min

(c) Compound (4) 6-bromo-1-cyclopropyl-7-methyl-indoline-2,3-dione

A solution of 3-bromo-N-cyclopropyl-2-methyl-aniline ($26.3 \mathrm{~g}, 116.32 \mathrm{mmol}$) and oxalyl chloride ($22.5 \mathrm{~mL}, 261.71 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ was heated to reflux for 18 h . After all starting material was consumed (followed by LCMS); the reaction mixture was concentrated under reduced pressure to remove excess oxalyl chloride. The residue was dissolved in DCM $(250 \mathrm{~mL})$ and the resultant solution was added dropwise to a stirring solution of aluminium trichloride ($62.0 \mathrm{~g}, 465.26 \mathrm{mmol}$) in $\mathrm{DCM}(250 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting reaction mixture was left to stir at the room temperature for 18 h before concentrating under reduced pressure. The residue was diluted with EtOAc, and carefully quenched with aqueous NaHCO_{3}. Multiple extractions and washes of organic layers were combined, washed with brine and dried over MgSO_{4}. The filtrate was concentrated in vacuo to give the crude product, which was purified by flash chromatography eluting with DCM to give 6-bromo-1-cyclopropyl-7-methyl-indoline-2,3-dione ($6.9 \mathrm{~g}, 21 \%$) as a bright orange solid.

LC-MS (Method A) 280.3/282.3 [M+H] ${ }^{+}$; RT 2.34 min

(d) Compound (5) 4-bromo-2-(cyclopropylamino)-3-methyl-benzoic acid

To a solution of 6-bromo-1-cyclopropyl-7-methyl-indoline-2,3-dione ($790 \mathrm{mg}, 2.82 \mathrm{mmol}$) in 2 M aq. $\mathrm{NaOH}(15 \mathrm{~mL}, 798.81 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, was added $\mathrm{H}_{2} \mathrm{O}_{2}(1.2 \mathrm{~mL}, 39.07 \mathrm{mmol})$ dropwise and the resulting reaction mixture was left to stir at room temperature for 2 h . After completion of the reaction, (monitored by LCMS), the reaction mixture was acidified to $\mathrm{pH}=$ $4 \sim 5$ with 2 M aq HCl and then extracted with EtOAc ($2 \times 300 \mathrm{~mL}$). The combined organic layers were washed with brine (300 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give 4-bromo-2-(cyclopropylamino)-3-methyl-benzoic acid ($760 \mathrm{mg}, 99 \%$) as a pale yellowbeige colour solid.
(LC-MS (Method A) 270.3/272.3 [M+H]+; RT 2.29 min
(e) Compound (7) 7-bromo-1-cyclopropyl-4-hydroxy-8-methyl-3-nitroquinolin-2(1H)-one

To a solution of 4-bromo-2-(cyclopropylamino)-3-methyl-benzoic acid (18 g, 66.64 mmol) (compound 4) in dry THF (360 mL) at room temperature under N_{2} atmosphere was added triphosgene ($11.8 \mathrm{~g}, 39.85 \mathrm{mmol}$) in one portion. This was allowed to stir at room temperature for 3 h , after which time the solvent was carefully removed in vacuo (rotary evaporator bath was prohibited from reaching $>40^{\circ} \mathrm{C}$, vacuum was set at 1 mbar , and reached between 1-10 mbar) to afford a thick red oil which was diluted with dry THF (450 mL) under a
N_{2} atmosphere. To the resulting solution $\mathrm{Et}_{3} \mathrm{~N}(74.3 \mathrm{~mL}, 533.1 \mathrm{mmol})$ was added dropwise, followed by the addition of ethyl nitroacetate ($11.1 \mathrm{~mL}, 99.96 \mathrm{mmol}$) in one portion. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ overnight, after which time the solvent was removed in vacuo. The residue was then partitioned between EtOAc (100 mL) and brine (100 mL). 2 M aqueous HCl was then added to adjust the pH to around 3 .

The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo to give an orange oil. Purification by flash column chromatography eluting initially with 50-100\% EtOAc in Petroleum ether (40-60) switching to $5-10 \%$ MeOH in DCM gave 7-bromo-1-cyclopropyl-4-hydroxy-8-methyl-3-nitro-quinolin-2-one ($6 \mathrm{~g}, 27 \%$) as a yellow solid.

LC-MS (Method B) 339.3/341.2 [M+H] ${ }^{+}$; RT 1.60 min.

(f) Compound (8) 3-Amino-7-bromo-1-cyclopropyl-4-hydroxy-8-methyl-quinolin-2-one

Sodium hydrosulfite ($3.5 \mathrm{~g}, 20.1 \mathrm{mmol}$) was added to a stirred solution of 7-bromo-1-cyclopropyl-4-hydroxy-8-methyl-3-nitro-quinolin-2-one ($2.6 \mathrm{~g}, 8.04 \mathrm{mmol}$) in EtOH (20 mL) and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and heated to reflux for 1 h . The reaction mixture was filtered through filter paper and the solvent removed in vacuo. Purification by flash column chromatography eluting with $0-10 \% \mathrm{MeOH}$ in DCM gave 3-amino-7-bromo-1-cyclopropyl-4-hydroxy-8-methyl-quinolin-2-one as a yellow crystalline solid. Yield assumed quantitative.

LC-MS (Method A) 308.9/310.8 [M+H] ${ }^{+}$; RT 1.38 min.

(e) Compound (9a) step 1: Ethyl 5-[4-bromo-2-(cyclopropylamino)-3-methyl-phenyl]oxazole-4carboxylate (Scheme 1, ROUTE B)

To a solution of 4-bromo-2-(cyclopropylamino)-3-methyl-benzoic acid ($530 \mathrm{mg}, 1.96 \mathrm{mmol}$) in dry THF (15 mL) at room temperature under N_{2} was added triphosgene ($348 \mathrm{mg}, 1.17 \mathrm{mmol}$) in one portion. After stirring at room temperature for 3 h the solvent was carefully removed in vacuo. To the resulting residue under N_{2} was added dry THF (10 mL), followed by $\mathrm{Et}_{3} \mathrm{~N}$ (2.18 $\mathrm{mL}, 15.7 \mathrm{mmol}$) dropwise. To the resulting mixture was added ethyl isocyanoacetate (0.32 $\mathrm{mL}, 2.94 \mathrm{mmol}$) in one portion and the reaction heated to $60^{\circ} \mathrm{C}$ overnight. The reaction was cooled to room temperature and the solvent was removed under reduced pressure. The residue was then partitioned between $\mathrm{EtOAc}(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL}) .2 \mathrm{M}$ aqueous HCl was then added to adjust the aqueous pH to around 3 . The EtOAc layer was then separated, washed 4 times with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude product was purified by flash chromatography eluting with 50% Petroleum ether (4060)/EtOAc to afford ethyl 5-[4-bromo-2-(cyclopropylamino)-3-methyl-phenyl]oxazole-4carboxylate ($370 \mathrm{mg}, 52 \%$) as an off-white solid.

LC-MS (Method A) 365.3/367.3 [M+H] ${ }^{+}$; RT 2.72 min

(f) Compound (9a) step 2: 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

(Scheme 1, ROUTE B)

To a solution of ethyl 5-[4-bromo-2-(cyclopropylamino)-3-methyl-phenyl]oxazole-4carboxylate ($370 \mathrm{mg}, 1.01 \mathrm{mmol}$) in dry DMF (5 mL) was added NaH (60% dispersed in mineral oil) ($61 \mathrm{mg}, 1.52 \mathrm{mmol})$ in one portion. This was then heated to $100^{\circ} \mathrm{C}$ for 1 h , after which time the reaction mixture was cooled to room temperature. EtOAc and $\mathrm{H}_{2} \mathrm{O}$ were added and the layers separated. The aqueous layer was washed once with EtOAc and the combined organic extracts were washed a further 4 times with $\mathrm{H}_{2} \mathrm{O}$ to remove DMF. The combined organic extracts were dried over MgSO_{4}, filtered, concentrated in vacuo and purified by flash chromatography using 50% Petroleum ether ($40-60$)/EtOAc as the eluent system to afford 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one (112 mg, 35%) as an off white solid.

LC-MS (Method A) 319.3/321.3 [M+H] ${ }^{+}$; RT 2.13 min

(g) REDX04139-7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-

 one

A mixture of 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one ($213 \mathrm{mg}, 0.67$ mmol), 2,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline (204 mg, 0.80 $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(326 \mathrm{mg}, 1 \mathrm{mmol})$ and 1,1'-bis(diphenylphosphino)ferrocene-palladium(II) dichloride dichloromethane complex ($65 \mathrm{mg}, 0.08 \mathrm{mmol}$) in toluene (3 mL), IPA (1 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was heated to $70^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was filtered through Celite and concentrated to dryness. The mixture was then redissolved in MeOH and purified by flash chromatography using a gradient eluent system of 100% Petroleum ether (40-60) to 100% EtOAc. The fractions containing the desired product were combined and concentrated in vacuo and triturated with ice cold $\mathrm{Et}_{2} \mathrm{O}$ to give 7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as a yellow solid (41 mg, 17%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.8 \mathrm{~Hz} 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97-6.93 (m, 1H), 6.63-6.59 (m, 1H), 4.00 (s, 2H), 3.66-3.60 (m, 1H), 2.53 (s, 3H), 1.27-1.19 $(\mathrm{m}, 2 \mathrm{H}), 0.67-0.65(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method A) $368.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 2.10 min

REDX05028-7-(4-Amino-2,5-difluoro-phenyl)-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4one

7-(4-Amino-2,5-difluoro-phenyl)-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

(a) Compound (12) 6-bromo-7-methyl-indoline-2,3-dione (commercially available)

A mixture of 3-bromo-2-methylaniline ($10 \mathrm{~mL}, 60.52 \mathrm{mmol}$), chloral hydrate ($14.9 \mathrm{~g}, 89.9$ $\mathrm{mmol})$ and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(94.6 \mathrm{~g}, 665.7 \mathrm{mmol})$ in hydrochloric acid ($6.4 \mathrm{~mL}, 211.2 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(700 \mathrm{~mL})$ was stirred vigorously at room temperature overnight. To the resulting mixture, hydroxylamine hydrochloride ($5.9 \mathrm{~g}, 84.3 \mathrm{mmol}$) was added and the mixture was heated to reflux overnight. The reaction mixture was ice cooled, and the resulting precipitate was collected by vacuum filtration and washed copiously with $\mathrm{H}_{2} \mathrm{O}$ and dried under suction. The precipitate was re-dissolved in EtOAc ($\sim 500 \mathrm{~mL}$) and washed with $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ and brine $(300 \mathrm{~mL})$ then dried over MgSO_{4}. The resulting filtrate was removed in vacuo to give 6-bromo-7-methyl-indoline-2,3-dione as a dark brown solid (16.5 g, 100\%), which was used directly in the next step without further purification.

LC-MS (Method A) 255/257.0 [M+H] ${ }^{+}$; RT 1.77 min.

To (2E)-N-(3-bromo-2-methyl-phenyl)-2-hydroxyimino-acetamide (16.55g, 64.38mmol) was added Sulfuric Acid ($16.19 \mathrm{~mL}, 303.76 \mathrm{mmol}$) which was stirred at $50^{\circ} \mathrm{C}$ until the solid had dissolved then the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2.5 hours. The reaction mixture was subjected to hot filtration under vacuum and the precipitate collected, washed with water, a saturated aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and water then dried in a dessicator under
vacuum at $50^{\circ} \mathrm{C}$ to give 6-bromo-7-methyl-indoline-2,3-dione ($13.3 \mathrm{~g}, 55.41 \mathrm{mmol}, 86 \%$ yield) as a brown crystalline solid.

LC-MS (Method A) 238.5/240.5 [M+H] ${ }^{+}$; RT 1.84 min.

(b) Compound (13) 6-Bromo-1-ethyl-7-methyl-indoline-2,3-dione

Iodoethane ($7.61 \mathrm{~mL}, 94.65 \mathrm{mmol}$) was added dropwise to a solution of 6-bromo-7-methyl-indoline-2,3-dione ($11.4 \mathrm{~g}, 47.32 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(7.9 \mathrm{~g}, 56.79 \mathrm{mmol})$ in dry DMF $(20 \mathrm{~mL})$ and the reaction mixture was heated to $100^{\circ} \mathrm{C}$. After 1 h the reaction mixture was then diluted with EtOAc (100 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the phases separated. The aqueous phase was extracted with EtOAc ($2 \times 70 \mathrm{~mL}$) and the combined organic phases were washed with brine (200 mL) and dried over MgSO_{4}. The resulting filtrate was removed in vacuo to give 6-bromo-1-ethyl-7-methyl-indoline-2,3-dione ($11.2 \mathrm{~g}, 88 \%$) as a brown crystalline solid which was used directly in the next step without further purification.

LC-MS (Method A) 268.3/270.3 [M+H] ${ }^{+}$; RT 2.32 min.

(c) Compound 13a (step 1) 4-Bromo-2-(ethylamino)-3-methyl-benzoic acid

Dropwise to a solution of 6-bromo-1-ethyl-7-methyl-indoline-2,3-dione (10.0 g, 37.3 mmol) in 2 M aq. $\mathrm{NaOH}(100 \mathrm{~mL})$ was added $\mathrm{H}_{2} \mathrm{O}_{2}(53.3 \mathrm{~mL}, 522.2 \mathrm{mmol})$ and the resulting reaction mixture was left to stir at room temperature for 2 h . The reaction mixture was diluted with DCM (150 mL) and the phases were separated. The aqueous phase was acidified to pH 3 with 2 M aqueous HCl and the resulting precipitate was filtered, collected and dried overnight in a heated desiccator at $40^{\circ} \mathrm{C}$ to give 4-bromo-2-(ethylamino)-3-methyl-benzoic acid ($5.2 \mathrm{~g}, 54 \%$ yield) as a pale yellow crystalline solid.

LC-MS (Method A) 258.3/260.3 [M+H] ${ }^{+}$; RT 1.25 min.
(d) Compound 13a (step 2) 7-Bromo-1-ethyl-4-hydroxy-8-methyl-3-nitro-quinolin-2-one

To a solution of 4-bromo-2-(ethylamino)-3-methyl-benzoic acid (1.7 g, 6.7 mmol) in dry THF $(20 \mathrm{~mL})$ at room temperature under N_{2} atmosphere was added triphosgene ($1.2 \mathrm{~g}, 4.0 \mathrm{mmol}$) in one portion. This was allowed to stir at room temperature for 3 h , after which time the solvent was carefully removed in vacuo (rotary evaporator bath was prohibited from reaching $>40^{\circ} \mathrm{C}$) to give a thick red oil which was diluted with dry THF (10 mL) under a N_{2} atmosphere. To the resulting solution $\mathrm{Et}_{3} \mathrm{~N}$ ($7.5 \mathrm{~mL}, 53.9 \mathrm{mmol}$) was added dropwise, followed by the
addition of ethyl nitroacetate ($1.12 \mathrm{~mL}, 10.1 \mathrm{mmol}$) in one portion. The reaction mixture was heated to $60^{\circ} \mathrm{C}$ overnight, after which time the solvent was removed in vacuo (maintaining bath temperature $<40^{\circ} \mathrm{C}$). The residue was then partitioned between EtOAc $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL}) .2 \mathrm{M}$ aqueous HCl was then added to adjust the pH to around 3 . The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed in vacuo to give 7-bromo-1-ethyl-4-hydroxy-8-methyl-3-nitro-quinolin-2-one as an orange solid in quantitative yield, which was used in the next step without further purification.

LC-MS (Method A) 327.3/329.3 [M+H] ${ }^{+}$; RT 2.08 min.

(e) Compound 13a (step 3) 3-Amino-7-bromo-1-ethyl-4-hydroxy-8-methyl-quinolin-2-one

Sodium hydrosulfite ($3.5 \mathrm{~g}, 20.1 \mathrm{mmol}$) was added to a stirred solution of 7-bromo-1-ethyl-4-hydroxy-8-methyl-3-nitro-quinolin-2-one ($2.6 \mathrm{~g}, 8.0 \mathrm{mmol}$) in EtOH (20 mL) and $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$ and heated to reflux for 1 h . The reaction mixture was filtered through filter paper and the solvent removed in vacuo. Purification by flash column chromatography eluting with 0-10\% MeOH in DCM gave 3-amino-7-bromo-1-ethyl-4-hydroxy-8-methyl-quinolin-2-one (652 mg, 27%) as a yellow crystalline solid.

LC-MS (Method A) 297.3/299.3 [M+H] ${ }^{+}$; RT 1.77 min.
(f) Compound 13a (step 4) 7-Bromo-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

To 3-amino-7-bromo-1-ethyl-4-hydroxy-8-methyl-quinolin-2-one (101 mg, 0.3 mmol) was added to triethyl orthoformate ($5 \mathrm{~mL}, 0.3 \mathrm{mmol}$). The reaction mixture was heated to $105^{\circ} \mathrm{C}$ for 2 h , then excess triethyl orthoformate was removed in vacuo. Column chromatography eluting with 30-70 \% EtOAc in Petroleum ether (40-60) gave 7-bromo-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4-one in quantitative yield, which was used in the next step without further purification.

LC-MS (Method A) 307.3/309.3 [M+H] ${ }^{+}$; RT 2.15 min.
(g) REDX05028 7-(4-Amino-2,5-difluoro-phenyl)-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

A mixture of 7-bromo-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4-one ($82 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline ($81 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (130 mg, 0.4 mmol) and 1,1'-bis(diphenylphosphino)ferrocene-palladium(II) dichloride dichloromethane complex ($43 \mathrm{mg}, 0.05 \mathrm{mmol}$) in toluene (3 mL), IPA (1 mL) and $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL}$) was heated to $70^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was then filtered through Celite and the solvent removed in vacuo. Purification by flash column chromatography eluting with 30-70\%

EtOAc in Petroleum ether (40-60) gave 7-(4-amino-2,5-difluoro-phenyl)-5-ethyl-6-methyl-oxazolo[4,5-c]quinolin-4-one (13 mg, 13%) as a light purple crystalline solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}$, $2 \mathrm{H}), 2.45(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LC-MS (Method A) $356.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 2.11 min.

REDX05166-7-(4-amino-2,5-difluorophenyl)-5-cyclopropyloxazolo[4,5-c]quinolin-4(5H)-one

(a) Compound (29) 6-bromo-1-cyclopropyl-1H-indole

To a suspension of cyclopropylboronic acid ($876.35 \mathrm{mg}, 10.2 \mathrm{mmol}$) 6-bromo-1H-indole (1.g, 5.1 mmol) and sodium carbonate ($1081.3 \mathrm{mg}, 10.2 \mathrm{mmol}$) in DCE (30 mL) was added a suspension of copper(II) acetate ($926.49 \mathrm{mg}, 5.1 \mathrm{mmol}$) and 2,2'-bipyridyl (796.67mg, $5.1 \mathrm{mmol})$ in hot DCE (30 mL). The mixture was then heated to $70^{\circ} \mathrm{C}$ for 5 hr under air. The reaction mixture was then cooled to room temperature and aqueous ammonium chloride solution (sat.) (100 mL) was added together with DCM (100 mL) and the layers were separated. The aqueous layer was then extracted with DCM $(2 \times 50 \mathrm{~mL})$ and the solvent was removed from the combined organics under reduced pressure.

The crude product was purified by flash silica chromatography using $0-10 \%$ ethyl acetate in pet. Ether to give 6-bromo-1-cyclopropyl-indole ($876 \mathrm{mg}, 73$ yield) as a pale yellow oil. LC-MS (Method A) 267/269, [M+2OH] ${ }^{+}$; RT 3.27 min.

(b) Compoud (30) 6-bromo-1-cyclopropylindoline-2,3-dione

To a solution of 6-bromo-1-cyclopropyl-indole ($0.87 \mathrm{~g}, 3.68 \mathrm{mmol}$) in DMSO (5.5 mL) was added N-Bromosuccinimide ($1967 \mathrm{mg}, 11.05 \mathrm{mmol}$) portion-wise over 30 min . The reaction mixture was then heated to $60^{\circ} \mathrm{C}$ overnight. After which time, the reaction mixture was cooled to room temperature and then poured into water. A yellow precipitate formed. The mixture was stirred at room temperature for 30 minutes. After which time the precipitate was filtered off and washed several times with water. This was then dried using a high vacuum at $40^{\circ} \mathrm{C}$. The product was then directly used in the next reaction.

(c) Compound (31) 4-bromo-2-(cyclopropylamino)benzoic acid

A solution of 6-bromo-1-cyclopropyl-indoline-2,3-dione ($0.5 \mathrm{~g}, 1.88 \mathrm{mmol}$) in 2 M aqueous sodium hydroxide ($8 \mathrm{~mL}, 16.3 \mathrm{mmol}$) was cooled to $0^{\circ} \mathrm{C}$ and hydrogen peroxide (2.35 mL , $7.52 \mathrm{mmol})$ was added dropwise. This was left to stir at room temperature for 2 hours. The reaction mixture was then washed with DCM (30 mL) and the phases were separated. The aqueous phase was acidified to pH 3 with 2 M HCl , which resulted in precipitate formation. DCM (30 mL) was then added. The aqueous layer was then extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were then dried over MgSO_{4} and concentrated in vacuo to give the 4-bromo-2-(cyclopropylamino)benzoic acid as an orange solid (0.48g, 99\%).

LC-MS (Method A) 254.4/256.4, [M-H]; RT 2.61 min.

(d) Compound (32) 7-bromo-5-cyclopropyl-oxazolo[4,5-c]quinolin-4-one

To a solution of 4-bromo-2-(cyclopropylamino)benzoic acid ($0.48 \mathrm{~g}, 1.87 \mathrm{mmol}$) in dry THF (15 mL) was added triphosgene $(332.6 \mathrm{mg}, 1.12 \mathrm{mmol})$ in one portion. This was stirred at room temperature for 3 hours. After which time the solvent was carefully removed in vacuo Which gave thick red oil which was diluted with dry DMF (15mL) and kept under N_{2}. To this was added ethyl Isocyanoacetate ($0.31 \mathrm{~mL}, 2.81 \mathrm{mmol}$) dropwise. This was followed by the addition of sodium hydride, (60% dispersed in mineral oil) ($360 \mathrm{mg}, 15 \mathrm{mmol}$) portion wise. The reaction mixture was then heated to $100^{\circ} \mathrm{C}$ for 2 hours. After which time the reaction mixture was cooled to room temperature and DCM was added followed by careful addition of water. The DCM layer was separated and washed a further 4 times with water. The DCM layer was then dried over MgSO_{4} and concentrated in vacuo. The residue was then used directly in the next step without further purification LC-MS (Method A) 305.3/307.3, [M+H]+; RT 2.05 min.

(e) REDX05166 7-(4-amino-2,5-difluorophenyl)-5-cyclopropyloxazolo[4,5-c]quinolin-4(5H)-one

To a mixture of 7-bromo-5-cyclopropyl-oxazolo[4,5-c]quinolin-4-one (70.mg, 0.23 mmol), 4-Amino-2,5-difluorobenzeneboronic acid pinacol ester ($0.12 \mathrm{~g}, 0.46 \mathrm{mmol}$), $\quad\left[1,1^{\prime}-\right.$ Bis(diphenylphosphino)ferrocene]dichloropalladium(II), complex with dichloromethane ($18.74 \mathrm{mg}, 0.02 \mathrm{mmol}$), caesium Carbonate $(0.11 \mathrm{~g}, 0.34 \mathrm{mmol})$ was added 1,4 -Dioxane $(1 \mathrm{~mL})$ and Water (0.10 mL). This mixture was then heated to $70^{\circ} \mathrm{C}$ for 2 hours. After which time the reaction mixture was cooled to room temperature and directly purified by flash chromatography using an eluent system of MeOH in DCM ($0: 100$ to 20:80). The resulting product was then re-purified by PREP chromatography to give 7-(4-amino-2,5-difluorophenyl)-5-cyclopropyloxazolo[4,5-c]quinolin-4(5H)-one as a white solid ($2 \mathrm{mg}, 2.5 \%$) ${ }^{1} \mathrm{H}$ NMR (400MHz, $\left.\mathrm{CDCl}_{3}\right): \delta \mathrm{ppm}$ 8.21-8.17 (m, 1H), 8.05-7.95 (m, 1H), 7.49 (d, 1H), 7.19-7.15 $(\mathrm{m}, 1 \mathrm{H}), 6.67-6.55(\mathrm{~m}, 1 \mathrm{H})$, , $4.00(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.97(\mathrm{~m}$, 2H);

LC-MS (Method A) 354.4, [M+H] ${ }^{+}$; RT 2.06 min.

REDX05237-7-(4-amino-2,5-difluoro-phenyl)-5-ethyl-8-fluoro-6-methyl-oxazolo[4,5-c]quinolin-4-one

(a) Compound (34) 5-Fluoro-7-methyl-indoline-2,3-dione

A mixture of 4-fluoro-2-methyl-aniline ($8.88 \mathrm{~mL}, 79.9 \mathrm{mmol}$), chloral hydrate ($19.6 \mathrm{~g}, 118.7$ $\mathrm{mmol})$, anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}(124.9 \mathrm{~g}, 879 \mathrm{mmol})$ in hydrochloric acid ($8.47 \mathrm{~mL}, 278.9 \mathrm{mmol}$) and $\mathrm{H}_{2} \mathrm{O}(450 \mathrm{~mL})$ was stirred vigorously at room temperature overnight. To the resulting mixture, hydroxylamine hydrochloride ($7.7 \mathrm{~g}, 111.3 \mathrm{mmol}$) was added and the mixture was heated to reflux overnight. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and the resulting precipitate was collected by vacuum filtration and washed copiously with $\mathrm{H}_{2} \mathrm{O}$ and dried under suction. The resulting filtrate was removed in vacuo to give 5-fluoro-7-methyl-indoline-2,3-dione as a dark brown solid which was used directly in the next step without further purification. 16.82 g, 100\%

LC-MS (Method A) $197.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 1.44 min.

To (2E)-N-(4-fluoro-2-methyl-phenyl)-2-hydroxyimino-acetamide (16.82g, 85.7 mmol) was added sulfuric acid $(21.56 \mathrm{~mL}, 404.4 \mathrm{mmol})$ which was stirred at $50^{\circ} \mathrm{C}$ until the solid had dissolved then the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 45 minutes. The reaction mixture was cooled in an ice bath and water (40 ml) was added to the mixture. The deposited precipitate was filtered off and washed with water before being dried in vacuo to obtain 5-fluoro-7-methyl-indoline-2,3-dione ($9.94 \mathrm{~g}, 55 \mathrm{mmol}, 65 \%$ yield).

LC-MS (Method A) 180.3 [M+H] ${ }^{+}$; RT 1.49 min .

(b) Compound (35) 4,6-Dibromo-5-fluoro-7-methyl-indoline-2,3-dione

To an ice cold stirred solution of 5-fluoro-7-methyl-indoline-2,3-dione ($9.9 \mathrm{~g}, 55 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{SO}_{4}(0.5 \mathrm{~mL}, 9 \mathrm{mmol})$ was added N -bromosuccinimide ($19.7 \mathrm{~g}, 110 \mathrm{mmol}$) in portions over the course of 1 h . The reaction mixture was then allowed to warm to room temperature and stirred for 2 h , then re-cooled to $0-5^{\circ} \mathrm{C}$ and a further portion of N -bromosuccinimide (4.9 g , 27.6 mmol) was added. The reaction mixture was then allowed to warm to room temperature and stirred for a further 3 h , The reaction mixture was poured onto crushed ice with vigorous stirring forming a precipitate, which was filtered and washed with cold $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$. The filtrate was diluted with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with DCM (200 mL). The organic layer was dried over MgSO_{4}, filtered and concentrated to dryness in vacuo before being combined with the original precipitate to give 4,6-dibromo-5-fluoro-7-methyl-indoline-2,3-dione (17.3 $\mathrm{g}, 93 \%$ which was used directly in the next step.

LC-MS $357.0[\mathrm{M}+\mathrm{Na}]^{+}$; RT 2.27 min. (multiple bromine isotope patterns observed - main ion reported)
(c) Compound (36) 6-Bromo-5-fluoro-7-methyl-indoline-2,3-dione

A round bottomed flask was charged with 4,6-dibromo-5-fluoro-7-methyl-indoline-2,3-dione $(17.3 \mathrm{~g}, 51.31 \mathrm{mmol})$, copper $(6.5 \mathrm{~g}, 102.63 \mathrm{mmol})$ and propionic acid ($51.87 \mathrm{~mL}, 693.21$ $\mathrm{mmol})$. The resulting mixture was placed under a N_{2} atmosphere and heated to $130^{\circ} \mathrm{C}$ for 90
min. On cooling toluene (50 ml) was added and the mixture was filtered. The collected solids were washed with toluene ($5 \times 50 \mathrm{ml}$) and EtOAc ($5 \times 50 \mathrm{ml}$). The combined organics were washed with 2 M aqueous HCl until the aqueous layer was yellow in colour. The organic layer was further washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, brine (50 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated in vacuo to give 6-bromo-5-fluoro-7-methyl-indoline-2,3-dione ($11.0 \mathrm{~g}, 83 \%$). LC-MS 286.3/288.3 [$\mathrm{M}+\mathrm{H}]^{+}$; RT 2.35 min .
(d) Compound (37) 6-Bromo-5-fluoro-7-methyl-indoline-2,3-dione

lodoethane ($1.25 \mathrm{~mL}, 15.5 \mathrm{mmol}$) was added drop-wise to a solution of 6-bromo-5-fluoro-7-methyl-indoline-2,3-dione ($2.0 \mathrm{~g}, 7.75 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.3 \mathrm{~g}, 9.3 \mathrm{mmol})$ in dry DMF (1 mL) and then heated to $100^{\circ} \mathrm{C}$ for 1 h . On cooling the reaction mixture was diluted with EtOAc (100 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and the phases separated. The aqueous phase was extracted with EtOAc ($2 \times 70 \mathrm{~mL}$) and the combined organic phases were washed with brine (200 mL), dried over MgSO_{4} and solvent removed in vacuo to give 6-bromo-1-ethyl-5-fluoro-7-methyl-indoline-2,3-dione ($2.2 \mathrm{~g}, 99 \%$) which was used directly in the next step without further purification.

LC-MS (Method A) 268.3/270.3 [M+H] ${ }^{+}$; RT 2.32 min.

(e) Compound (38) 4-Bromo-2-(ethylamino)-5-fluoro-3-methyl-benzoic acid

Drop-wise to a solution of 6-bromo-1-ethyl-5-fluoro-7-methyl-indoline-2,3-dione (2.2 g, 7.7 mmol) in 2 M aq. NaOH (21 mL) was added $\mathrm{H}_{2} \mathrm{O}_{2}$ ($3.14 \mathrm{~mL}, 30.8 \mathrm{mmol}$). After 2 h stirring at room temperature the reaction mixture was diluted with $\operatorname{DCM}(150 \mathrm{~mL})$ and the phases were separated. The aqueous phase was acidified to pH 3 with 2 M aqueous HCl and the resulting precipitate was filtered, collected and dried overnight in a heated desiccator at $40{ }^{\circ} \mathrm{C}$ to give 4-bromo-2-(ethylamino)-5-fluoro-3-methyl-benzoic acid (1.9 g, 87%) as a pale yellow crystalline solid.

LC-MS (Method A) 276.3/278.3 [M+H]+; RT 1.18 min.
(f) Compound (39) Ethyl 5-[4-bromo-2-(ethylamino)-5-fluoro-3-methyl-phenyl]oxazole-4carboxylate

To a solution of 4-bromo-2-(ethylamino)-5-fluoro-3-methyl-benzoic acid ($1.9 \mathrm{~g}, 6.7 \mathrm{mmol}$) in dry THF (50 mL) at room temperature under N_{2} was added triphosgene ($1.2 \mathrm{~g}, 4 . \mathrm{mmol}$) in one portion. After stirring at room temperature for 3 h the solvent was carefully removed in vacuo. To the resulting residue under N_{2} was added dry THF (40 mL), followed by $\mathrm{Et}_{3} \mathrm{~N}(7.47$ $\mathrm{mL}, 53.6 \mathrm{mmol}$) dropwise. To the resulting mixture was added ethyl isocyanoacetate (1.1 mL ,
$10.05 \mathrm{mmol})$ in one portion and the reaction heated to $60^{\circ} \mathrm{C}$ overnight. On cooling to room temperature, the solvent was removed under reduced pressure. The residue was then partitioned between EtOAc (20 mL) and brine (20 mL). 2 M aqueous HCl was then added to adjust the aqueous pH to around 3. The EtOAc layer was then separated, washed 4 times with $\mathrm{H}_{2} \mathrm{O}$, dried over MgSO_{4}, filtered and concentrated in vacuo to afford ethyl 5-[4-bromo-2-(ethylamino)-5-fluoro-3-methyl-phenyl]oxazole-4-carboxylate ($2.1 \mathrm{~g}, 84 \%$) as a yellow solid. LC-MS (Method A) 371.3/373.3 [M+H] ${ }^{+}$; RT 2.79 min .
(g) Compound (40) 7-bromo-5-ethyl-8-fluoro-6-methyl-oxazolo[4,5-c]quinolin-4-one

To a solution of ethyl 5-[4-bromo-2-(ethylamino)-5-fluoro-3-methyl-phenyl]oxazole-4carboxylate ($2.1 \mathrm{~g}, 5.7 \mathrm{mmol}$) in dry DMF (5 mL) was added NaH (60% dispersed in mineral oil; $61 \mathrm{mg}, 1.5 \mathrm{mmol}$) in one portion. The reaction mixture was then heated to $100^{\circ} \mathrm{C}$ for 1 h . On cooling to room temperature EtOAc (100 mL) and $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ were added and the layers separated. The aqueous layer was washed with EtOAc (50 mL) and the combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The organic extracts were dried over MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by flash chromatography using 50 \% EtOAc/Petroleum ether (40-60) as the eluent to give 7-bromo-5-ethyl-8-fluoro-6-methyl-oxazolo[4,5-c]quinolin-4-one (380 mg, 21%).

LC-MS (Method A) 325.3/327.3 [M+H] ${ }^{+}$; RT 2.31 min.
(h) REDX05237 7-(4-amino-2,5-difluoro-phenyl)-5-ethyl-8-fluoro-6-methyl-oxazolo[4,5-c]quinolin-

4-one

Prepared using 4-amino-2,5-difuorobenzeneboronic acid pinacol ester and 7-bromo-5-ethyl-8-fluoro-6-methyl-oxazolo[4,5-c]quinolin-4-one and a similar procedure to that described in REDX05557.
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl 3): $\delta 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (ddd, $\mathrm{J}=1.07,6.4,10.95$ $\mathrm{Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, \mathrm{J}=7.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$, 2.43 (s, 3H), 1.32 (t, J = $6.99 \mathrm{~Hz}, 3 \mathrm{H}$); LC-MS (Method A) $374.3[\mathrm{M}+\mathrm{H}]^{+}$; RT 2.19 min .

REDX05282-7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-2,6-dimethyl-oxazolo[4,5-c]quinolin-4-one

(a) Compound (9b) 7-Bromo-5-cyclopropyl-2,6-dimethyl-oxazolo[4,5-c]quinolin-4-one

Trimethyl orthoacetate ($20 \mathrm{~mL}, 159.13 \mathrm{mmol}$) was added to 3-amino-7-tromo-1-cyclopropy1-4-hydroxy-8-methyl-quinolin-2-one ($920 \mathrm{mg}, 2.98 \mathrm{mmol}$) and 0.1 mL of 1 M HCl in diethyl ether was added. The reaction mixture was then refluxed for approximately four hours. The
solvent was removed under vacuum and then re-dissolved in DCM and evaporated onto silica and then purified by flash chromatography, eluting with 0-100\% ethyl acetate in heptane to give 7-bromo-5-cyclopropyl-Z6-dmethyl-oxazolo[4,5-c]quinolin-4-one ($400 \mathrm{mg}, 1.20 \mathrm{mmol}$, 40.3 \% yield) as a pale yellow solid.

LC-MS (Method A) 333.0/335.0 [M+H] ${ }^{+}$, RT 3.84 min.

(b) REDX05282 7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-2,6-dimethyl-oxazolo[4,5-

 c]quinolin-4-one

Prepared using 2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 7-bromo-5-cyclopropyl-2,6-dimethyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139. (23 $\mathrm{mg}, 19$ \%) as a white solid.
${ }^{1} \mathrm{H}$ NMR (400MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta \mathrm{ppm} 7.78-7.81(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.30(\mathrm{~d}, \mathrm{~J}=8.0,1 \mathrm{H}), 6.95-$ 6.99 (dd, $J=11.3 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.71(\mathrm{dd}, \mathrm{J}=11.3 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.66(\mathrm{~m}, 1 \mathrm{H})$, $2.70(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, 2 \mathrm{H}), 0.61(\mathrm{~s}, 2 \mathrm{H})$; LC-MS (Method C) $382.2[\mathrm{M}+\mathrm{H}]^{+}$, RT 1.60 min.

REDX05412 - 7-(4-amino-3-fluorophenyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-

 one

Prepared using 2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.06(\mathrm{dd}, J=11.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{ddd}, J=8.1,1.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=9.0,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.70-0.66(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method B) $350.5[\mathrm{M}+\mathrm{H}]^{+}$; RT 2.08 min .

REDX05504-5-cyclopropyl-7-(1H-indazol-5-yl)-6-methyl-oxazolo[4,5-c]quinolin-4-one

Prepared using 6-[4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indazole and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 10.62(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{dd}, \mathrm{J}=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, \mathrm{J}=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.71(\mathrm{~m}, 2 \mathrm{H})$;

LC-MS (Method B) $357.4\left[\mathrm{M}+\mathrm{H}^{+}\right]$; RT 1.84 min

REDX05510-7-(4-aminophenyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

Prepared using 4-aminophenyl boronic acid pinacol ester and and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.21(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H})$, 1.32-1.27 (m, 2H), 0.71-0.66 (m, 2H); LC-MS (Method B) $332.2[\mathrm{M}+\mathrm{H}]^{+}$, RT 4.64 min

REDX05557-7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4-

 one
(a) Compound (15) 4-Bromo-2,5-difluorobenzoic acid

To a - $78{ }^{\circ} \mathrm{C}$ solution of 1,4-dibromo-2,5-difluorobenzene ($2.7 \mathrm{~g}, 9.99 \mathrm{mmol}$) in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(30$ mL) under an inert atmosphere was added 2.5 M n -butyllithium solution in hexanes (4 mL , 9.99 mmol) drop-wise and the mixture left stirring for 2 h . Crushed CO_{2} pellets were added slowly and the mixture was allowed to warm to ambient temperature and left stirring for 1 h . After quenching with 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ the mixture was basified with 1 M aqueous $\mathrm{NaOH}(70 \mathrm{~mL})$ and then washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The aqueous layer was acidified with 1 M aqueous $\mathrm{HCl}(80 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The organic layer was washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was removed in vacuo to give 4-
bromo-2,5-difluoro benzoic acid ($2.3 \mathrm{~g}, 97 \%$) as an off-white solid, which was used without further purification.
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl $\left.)_{3}\right): \delta \mathrm{ppm} 9.50(\mathrm{brs}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=9.3$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}$); LC-MS (Method C) 234.9/236.9 [M-H]; RT 3.43 min .
(b) Compound (16) Ethyl 5-(4-bromo-2,5-difluoro-phenyl)oxazole-4-carboxylate

To an ice-cooled solution of 4-bromo-2,5-difluorobenzoic acid ($6.3 \mathrm{~g}, 26.5 \mathrm{mmol}$) in DCM (80 mL) was added oxalyl chloride ($3.46 \mathrm{~mL}, 39.7 \mathrm{mmol}$), followed by several drops of DMF. The mixture was then removed from the ice bath and stirred for 2 h . The solvent was removed under reduced pressure to give 4-bromo-2,5-difluorobenzoyl chloride.

To an ice-cooled solution of ethyl isocyanoacetate ($3.18 \mathrm{~mL}, 29.1 \mathrm{mmol}$) in THF (40 mL) was added $\mathrm{Et}_{3} \mathrm{~N}$ ($11.0 \mathrm{~mL}, 79.4 \mathrm{mmol}$) followed by the slow addition of 4-bromo-2,5difluorobenzoyl chloride in THF (40 mL). The reaction mixture was then allowed to warm to room temperature and stirred for 18 h . The reaction mixture was then diluted with DCM and washed with saturated aqueous NaHCO_{3} followed by brine. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give ethyl 5-(4-bromo-2,5-difluoro-phenyl)oxazole-4-carboxylate as a solid ($7.8 \mathrm{~g}, 89 \%$).

LC-MS (Method C) 331.9/333.9 [M+H] ${ }^{+}$; RT 1.77 min.

(c) Compound (17) 5-(4-Bromo-2,5-difluoro-phenyl)oxazole-4-carboxylic acid

A solution of ethyl 5-(4-bromo-2,5-difluoro-phenyl)oxazole-4-carboxylate ($7.8 \mathrm{~g}, 23.4 \mathrm{mmol}$) in 1,4-dioxane (50 mL) was treated with 2 M aq . $\mathrm{LiOH}(50 \mathrm{~mL}$) and stirred at room temperature overnight. The 1,4-dioxane was then removed under reduced pressure and the remaining aqueous was acidified with 1 M aqueous HCl , and then extracted with EtOAc. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated in vacuo to give 5-(4-bromo-2,5-difluoro-phenyl)oxazole-4-carboxylic acid as an off white solid ($6.1 \mathrm{~g}, 85 \%$), which was used without further purification.

LC-MS (Method C) 303.9/305.8 [M+H] ${ }^{+}$; RT 1.46 min.
(d) Compound (18) 5-(4-Bromo-2,5-difluoro-phenyl)-N-cyclopropyl-oxazole-4-carboxamide

A suspension of 5-(4-bromo-2,5-difluoro-phenyl)oxazole-4-carboxylic acid ($5.5 \mathrm{~g}, 18.09 \mathrm{mmol}$) in anhydrous DCM (80 mL) was cooled in an ice bath followed by the slow addition of oxalyl chloride ($2.3 \mathrm{~mL}, 27.14 \mathrm{mmol}$). Several drops of DMF were added to catalyse the reaction. The reaction mixture was allowed to warm to room temperature and stirred for 2 h , before concentrating in vacuo to give a brown liquid, which was dissolved in $\mathrm{DCM}(80 \mathrm{~mL})$ and treated
with cyclopropylamine ($2.75 \mathrm{~mL}, 39.69 \mathrm{mmol}$). After stirring at room temperature for 2 h the reaction mixture was diluted with DCM and washed with saturated aqueous NaHCO_{3}. The organic phase was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give 5-(4-bromo-2,5-difluoro-phenyl)-N-cyclopropyl-oxazole-4-carboxamide ($5.1 \mathrm{~g}, 83 \%$) as a light brown solid, which was used without further purification.

LC-MS (Method C) 342.8/344.7 [M+H] ${ }^{+}$; RT 1.65 min.
(e) Compound (19) 7-Bromo-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4-one

A mixture of 5-(4-bromo-2,5-difluoro-phenyl)- N -cyclopropyl-oxazole-4-carboxamide (1.5 g , $4.37 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.8 \mathrm{~g}, 13.12 \mathrm{mmol})$ and 18 -crown-6 ($1.2 \mathrm{~g}, 4.37 \mathrm{mmol}$) in DMSO (20 mL) were heated in the microwave (Biotage Initiator) at $140{ }^{\circ} \mathrm{C}$ for 90 min . The reaction mixture was then diluted with EtOAc, which was washed with $\mathrm{H}_{2} \mathrm{O}$ several times followed by brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo to give a brown solid. The crude product was purified by flash chromatography eluting with 0-100 \% EtOAc in heptane to give 7-bromo-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4-one (370 $\mathrm{mg}, 26 \%)$ as an off-white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.22(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.04 (tt, J = 6.8, 4 Hz, 1H), 1.47 (m, 2H), 0.97 (m, 2H); LC-MS (Method C) 322.9/324.8 [M+H]+; RT 1.55 min .
(f) REDX05557-7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4one

A mixture of 4-amino-2,5-difuorobenzeneboronic acid pinacol ester ($31 \mathrm{mg}, 0.12 \mathrm{mmol}$) and 7-bromo-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4-one ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$), [1,1'bis(diphenylphosphino)ferrocene]palladium(II) chloride dichloromethane complex (10 mg , $0.01 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(121 \mathrm{mg}, 0.37 \mathrm{mmol})$ in dimethoxyethane (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ was heated in the microwave (Biotage Initiator) at $120^{\circ} \mathrm{C}$ for 20 minute. The mixture was dry loaded onto silica and purified by flash chromatography eluting with 0-20\% MeOH in DCM to give a solid, which was further purified by preparative HPLC to yield 7-(4-amino-2,5-difluoro-phenyl)-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4-one (11 mg, 23\%) as a beige solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 8.87$ (s,1H) , 7.94 (dd, J = 6.2, 7.8 Hz, 2H), 7.26 (dd, J = $11.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{dd}, \mathrm{J}=11.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{t}, \mathrm{J}=6.8$ Hz, 2H), 0.86 (d, J=3.7 Hz, 2H); LC-MS (Method C) $372.1[\mathrm{M}+\mathrm{H}]^{+}$; RT 1.90 min .

REDX05634-7-(4-amino-2,5-difluorophenyl)-5-cyclopropyl-8-fluorooxazolo[4,5-c]1,8-naphthyridin-4-one

(a) Compound 23 (step 1) 2,6-Dichloro-5-fluoro-pyridine-3-carbonyl chloride

A mixture of 2,6-dichloro-5-fluoronicotinic acid ($3.5 \mathrm{~g}, 16.43 \mathrm{mmol}$) and thionyl chloride (5.99 $\mathrm{mL}, 82.15 \mathrm{mmol})$ in toluene (50 mL) was refluxed under the nitrogen atmosphere for 3 hours. The mixture was cooled down and the solvent was removed under reduced pressure. The residue was co-evaporated with toluene ($2 \times 50 \mathrm{~mL}$) to give 2,6-dichloro-5-fluoro-pyridine-3carbonyl chloride ($3.8 \mathrm{~g}, 16.43 \mathrm{mmol}$, quantitative yield) as a yellow oil which was used in the next step without further purification assuming quantitative yield of the product.

(b) Compound 23 (step 2) Methyl 5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxylate

To a solution of methyl 2-isocyanoacetate ($1.73 \mathrm{~mL}, 18.06 \mathrm{mmol}$) in THF (30 mL) cooled in an ice bath was added triethylamine ($6.83 \mathrm{~mL}, 49.25 \mathrm{mmol}$) dropwise. A solution of 2,6-dichloro-5-fluoro-pyridine-3-carbonyl chloride ($3.8 \mathrm{~g}, 16.42 \mathrm{mmol}$) in THF (20 mL) was added dropwise over 5 minutes giving slight effervescence. The reaction was then allowed to warm to room temperature and stirred over weekend. The reaction was diluted with EtOAc (~ 100 $\mathrm{ml})$ and washed with $\sim 2 \mathrm{M} \mathrm{NaHCO} 3$ aq. ($\sim 40 \mathrm{~mL}$) and brine ($\sim 20 \mathrm{~mL}$) then the organic was dried
$\left(\mathrm{MgSO}_{4}\right)$, filtered and evaporated under reduced pressure to leave a dark brown solid. Purification by column chromatography through silica (100 g Biotage column) using $0-10 \%$ MeOH in DCM. (3.86 g, 81\%)

LC-MS (Method A) 259.3 [M-OMe+H]'; RT 2.19 min.

(c) Compound 23 (step 3) 5-(2,6-Dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxylic acid

To a stirred solution of methyl 5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxylate (1.2 $\mathrm{g}, 3.95 \mathrm{mmol})$ in THF (20 mL) was added lithium hydroxide ($11.85 \mathrm{~mL}, 23.71 \mathrm{mmol}$) in water $(5 \mathrm{~mL})$ and the reaction mixture was stirred at rt for 2 h . LCMS of the crude reaction mixture showed that the desired product had been formed and that no starting material remained. DCM $(20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ were added to the reaction mixture and then acidified to pH ~3 with $\mathrm{HCl}(2 \mathrm{M})$ and extracted with $\mathrm{DCM}(2 \times 30 \mathrm{~mL})$. The combined organics were washed with brine, dried over magnesium sulfate, filtered and the solvent was removed under reduced pressure to leave the crude reaction product 5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxylic acid ($1.0 \mathrm{~g}, 3.7 \mathrm{mmol}, 94 \%$) which was taken on to the next reaction without further purification.

LC-MS (Method A) 277.2 [M^{+}]; RT 1.75 min. Main isotope reported.

(d) Compound 24 (step 1) N-Cyclopropyl-5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxamide

To a solution of 5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxylic acid ($8.2 \mathrm{~g}, 29.6 \mathrm{mmol}$) in DCM (150 mL) was added cyclopropylamine ($2.46 \mathrm{~mL}, 35.52 \mathrm{mmol}$) N, N diisopropylethylamine ($10.3 \mathrm{~mL}, 59.2 \mathrm{mmol}$) and HATU ($12.4 \mathrm{~g}, 32.56 \mathrm{mmol}$) and the reaction mixture was allowed to stir at rt overnight. The reaction mixture was then diluted with water $(150 \mathrm{~mL})$ and the layers were separated. The aqueous layer was then extracted with DCM (2 x 50 mL), the organics were combined, dried over magnesium sulfate, filtered and the solvent was removed under reduced pressure to leave the crude reaction product. The crude reaction product was purified by flash silica chromatography using 0-50\% ethyl acetate in petroleum ether as eluent. The solvent was removed from fractions containing the desired product to give N-cyclopropyl-5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxamide (6.9 g, $21.89 \mathrm{mmol}, 74 \%$) as an off-white solid.

LC-MS (Method A) $316.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 2.13 min . Main isotope reported.
(e) Compound 24 (step 2) 7-Chloro-5-cyclopropyl-8-fluoro-oxazolo[4,5-c][1,8]naphthyridin-4-one

To a solution of N-cyclopropyl-5-(2,6-dichloro-5-fluoro-3-pyridyl)oxazole-4-carboxamide (6.9 $\mathrm{g}, 21.89 \mathrm{mmol}$) in DMF (100 mL) was added sodium hydride, (60% dispersed in mineral oil;
$1.9 \mathrm{~g}, 47.06 \mathrm{mmol}$) was added in small portions at $0^{\circ} \mathrm{C}$ and the resulting mixture was left to stirred overnight at rt under a nitrogen atmosphere. The reaction was carefully quenched by addition of water (100 mL), diluted with EtOAc (150 mL) and extracted the aqueous layer with EtOAc ($3 \times 100 \mathrm{~mL}$). Combined organic layers were concentrated to dryness, re-dissolved in DCM (150 mL) and water (150 mL). Aqueous layer extracted with DCM ($2 \times 50 \mathrm{~mL}$), combined organic layers were then washed with brine, dried over magnesium sulfate, filtered and concentrated to dryness to give the crude 7-chloro-5-cyclopropyl-8-fluoro-oxazolo[4,5c] $[1,8]$ naphthyridin-4-one ($5.5 \mathrm{~g}, 90 \%$) as cream white colour solid.

LC-MS (Method A) $280.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 1.97 min.
(f) REDX05634-7-(4-amino-2,5-difluorophenyl)-5-cyclopropyl-8-fluorooxazolo[4,5c] [1,8]naphthyridin-4(5H)-one

Prepared using 4-amino-2,5-difuorobenzeneboronic acid pinacol ester and 7-chloro-5-cyclopropyl-8-fluoro-oxazolo[4,5-c][1,8]naphthyridin-4-one as described in REDX05557
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left._{6}\right): \delta \mathrm{ppm} 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=11.8$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, \mathrm{J}=12.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 3.05-2.99(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.17(\mathrm{~m}, 2 \mathrm{H})$, 1.01-0.78 (m, 2H); LC-MS (Method B) $373.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 2.10 min .

REDX05774-7-(2- aminopyrimidin-5-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

Prepared using 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-pyrimidinamine and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139.
${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl $)_{3}$): $\delta \mathrm{ppm} 8.44(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, \mathrm{~J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.66(\mathrm{br}, \mathrm{s} 2 \mathrm{H}), 3.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 0.69(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method C) $334.1[\mathrm{M}+\mathrm{H}]^{+}$; RT 1.14 min

REDX05853 - 5-cyclopropyl-7-(2,5-difluoro-4-(hydroxymethyl)phenyl)-6-methyloxazolo[4,5-

 c]quinolin-4(5H)-one

Prepared using
[2,5-difluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenyl]methanol and 7-bromo-5-cyclopropyl-8-fluoro-oxazolo[4,5-c]quinolin-4-one as described for REDX04139
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (dd, J = 9.8, 6.0 Hz, 1H), $7.13(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~m}, 2 \mathrm{H})$; LCMS (Method C) 387.1 [M+H] ${ }^{+}$; RT 1.47 min

REDX05866-7-(4-amino-2-fluoro-phenyl)-5-cyclopropyl-6-methyl-oxazolo[4.5-c]quinolin-4one E

Prepared using 3-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139 (9 mg, 4\%) ${ }^{1} \mathrm{H}$ NMR (400MHz, CDCl $)_{3}$): $\delta \operatorname{ppm} 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09(\mathrm{~m}, 1 \mathrm{H}), 6.56(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.23$ (m, 2H), 0.67 (s, 2H); LC-MS (Method D) 350.5 [M+H]+; RT 1.97 min.

REDX05867 - 5-cyclopropyl-6-methyl-7-phenyl-oxazolo[4,5-c]quinolin-4-one

Prepared using 4.4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX4139
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.28$ (d, J = 8.0 Hz, 1H), 3.70-3.59 (m, 1H), $2.54(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.66(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method D) $317.5[\mathrm{M}+\mathrm{H}]^{+}$; RT 7.04 min.

REDX05931 - 7-(4-amino-2,5-difluorophenyl)-5-cyclopropyl-6-methyl-4-oxo-4H,5H-

 [1,3]oxazolo[4,5-c]quinolin-2-yl]methyl acetate(a) Compound (41) 7-Bromo-2-(chloromethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4one

To a stirred suspension of 3-amino-7-bromo-1-cyclopropyl-4-hydroxy-8-methyl-quinolin-2one ($5.5 \mathrm{~g}, 17.66 \mathrm{mmol}$) in $\mathrm{DCM}(60 \mathrm{~mL})$ under N_{2} at $0{ }^{\circ} \mathrm{C}$ was added 2-chloro-1,1,1trimethoxyethane ($3.33 \mathrm{~mL}, 24.73 \mathrm{mmol}$) followed by boron trifluoride diethyl etherate (2.4 $\mathrm{mL}, 19.43 \mathrm{mmol}$) drop-wise. After 35 min , the reaction mixture was allowed to warm to room temperature, followed by the sequential addition of $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and DCM (60 mL). After separation of the layers the aqueous was extracted with DCM ($2 \times 60 \mathrm{~mL}$). The organic phases were combined and solvent removed in vacuo to give a residue which was purified by flash chromatography using a slow gradient of 0-50\% EtOAc in DCM as eluent to give 7-bromo-2-(chloromethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one (2.8 g, 44 \%) as a pale pink solid.

LC-MS (Method D) 367.2 [M+H]+; RT 3.15 min. Main isotope reported.
(b) Compound (42) 2-(Azidomethyl)-7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4one

To a stirred solution of 7-bromo-2-(chloromethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one ($600 \mathrm{mg}, 1.63 \mathrm{mmol}$) in DMSO (15 mL) was added sodium azide (106 mg , $1.63 \mathrm{mmol})$. The reaction mixture was allowed to stir at room temperature overnight. $\mathrm{H}_{2} \mathrm{O}$ (15 mL) was added to the crude reaction mixture followed by $\mathrm{EtOAc}(50 \mathrm{~mL})$ and the layers were separated. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The solvent was then removed in vacuo and the crude residue was purified by flash chromatography using 0-60\% EtOAc in Petroleum ether (40-60) as eluent to give 2-(azidomethyl)-7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one ($531 \mathrm{mg}, 86 \%$) as a pale brown solid.

LC-MS (Method D) 374.3/376.3 [M+H]+; RT 2.79 min .

(c) Compound

(43) 7-(4-Amino-2,5-difluoro-phenyl)-2-(azidomethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c] quinolin-4-on

Prepared using 4-amino-2,5-difuorobenzeneboronic acid pinacol ester and 2-(azidomethyl)-7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one and a similar procedure to that described in REDX05557

LC-MS (Method D) 423.4 [M+H] ${ }^{+}$; RT 2.94 min.
(d) REDX05931-7-(4-amino-2,5-difluoro-phenyl)-2-(aminomethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

To a stirred solution of 7-(4-amino-2,5-difluoro-phenyl)-2-(azidomethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one (294 mg, 0.70 mmol) in a mixture of THF (20 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added $\mathrm{PPh}_{3}(274 \mathrm{mg}, 1.04 \mathrm{mmol})$ and the reaction mixture was heated at 75 ${ }^{\circ} \mathrm{C}$ for 2 h . On cooling the solvent was removed and the residual water was removed by azeotroping with toluene ($2 \times 5 \mathrm{~mL}$). The resulting residue was then purified by flash chromatography using $0-10 \% \mathrm{MeOH} / \mathrm{NH} 3(2 \mathrm{M})$ in DCM as eluent. The product containing
fractions were combined and concentrated to yield 7-(4-amino-2,5-difluoro-phenyl)-2-(aminomethyl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one (236 mg, 86%) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 7.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dd}, \mathrm{J}=$ 11.0, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dd}, \mathrm{J}=10.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H})$, $2.52(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.65(\mathrm{~s}, 2 \mathrm{H})$; LC-MS (Method B) 397.4 [$\mathrm{M}+\mathrm{H}]^{+} ;$RT 5.42 min .

REDX06062- 7-(5-aminopyrazin-2-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

Prepared using 5-cyclopropyl-6-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one and 5-bromo-2-pyrazinamin as described for REDX04139
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.22(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 1.34-$ $1.21(\mathrm{~m}, 2 \mathrm{H}), 0.70(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method D) $334.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 4.73 min.

REDX06110 - 7-(2,1,3-benzoxadiazol-5-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-

 one

Prepared using 5-cyclopropyl-6-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \mathrm{ppm} 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=9.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=9.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.62(\mathrm{~m}$, $1 \mathrm{H}), 2.59(\mathrm{~s}, 4 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.72-0.68(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method E) $359.4\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]$, RT 7.22 min

REDX06189-4-\{5-cyclopropyl-6-methyl-4-oxo-oxazolo[4,5-c]quinolin-7-yl\}-2,5-difluorobenzoic acid

Prepared using 5-cyclopropyl-6-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO-d $)$: $\delta \mathrm{ppm} 8.84(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=10.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.14$ (m, 2H), 0.51-0.45 (m, 2H); LC-MS (Method E) $397.4[\mathrm{M}+\mathrm{H}]^{+}$; RT 6.52 min

REDX06305-5-cyclopropyl-7-isoindolin-5-yl-6-methyl-oxazolo[4,5-c]quinolin-4-one

(a) tert-Butyl
 5-\{5-cyclopropyl-6-methyl-4-oxo-4H,5H-[1,3]oxazolo[4,5-c]quinolin-7-yl\}-

2,3-dihydro-1H-isoindole-2-carboxylate

Prepared using method as described in REDX04139 with 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one.

LC-MS (Method D) 458.4 [M+H]+; RT 3.45 min
(b) 5-cyclopropyl-7-isoindolin-5-yl-6-methyl-oxazolo[4,5-c]quinolin-4-one

Prepared using method described in REDX07517 with tert-butyl 5-\{5-cyclopropyl-6-methyl-4-oxo-4H,5H-[1,3]oxazolo[4,5-c]quinolin-7-yl\}-2,3-dihydro-1H-isoi ndole-2-carboxylate.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta \mathrm{ppm} 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.41(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 0.65(\mathrm{~m}, 2 \mathrm{H})$, LC-MS (Method D) 358.4 [M+H] ${ }^{+}$; RT 1.64 min

REDX06345 - (2S)-6-(4-amino-2,5-difluorophenyl)-2-methyl-4,11-dioxa-1,13diazatetracyclo[7.6.1.0 $,^{516} .0^{10},^{14}$]hexadeca-5(16),6,8,10(14),12-pentaen-15-one
(a) Compound 26 (step 1) Ethyl 5-(4-bromo-2,3-difluoro-phenyl)oxazole-4-carboxylate

To ethyl isocyanoacetate ($4.99 \mathrm{~mL}, 45.7 \mathrm{mmol}$) in THF (50 ml) at $0{ }^{\circ} \mathrm{C}$ was added triethylamine ($17.27 \mathrm{~mL}, 124.6 \mathrm{mmol}$) dropwise, followed by the addition of 4-bromo-2,3-difluoro-benzoyl chloride ($10.6 \mathrm{~g}, 41.5 \mathrm{mmol}$) in THF (50 ml) over 5 min . The reaction was allowed to warm to rt and stirred o / n. The mixture evaporated to near dryness and was diluted with DCM (100 ml). The organics were then washed with sat. $\mathrm{NaHCO}_{3}(\mathrm{x} 3)$ followed by brine. The DCM layer was dried through a hydrophobic frit and evaporated to dryness to give a dark red liquid. This was then purified by column chromatograhpy using an eluent system of 0 - 40\% pet ether/ethyl acetate to yield ethyl 5-(4-bromo-2,3-difluoro-phenyl)oxazole-4-carboxylate ($10.4 \mathrm{~g}, 75 \%$) as a red oil.

LC-MS (Method A) 332.3/334.3 [M+H] ${ }^{+}$; RT 3.06 min.
(b) Compound 26 (step 2) 5-(4-Bromo-2,3-difluorophenyl)-1,3-oxazole-4-carboxylic acid

Ethyl 5-(4-bromo-2,3-difluoro-phenyl)oxazole-4-carboxylate ($8.4 \mathrm{~g}, 25.3 \mathrm{mmol}$) was dissolved in THF (100 mL) followed by addition of 2M sodium hydroxide ($100 \mathrm{~mL}, 200 \mathrm{mmol}$). This was stirred at room temperature for 2 hours during which time the product precipitated. The THF was evaporated to leave the basic aqueous. The aqueous was acidified and extracted with ethyl acetate and dried over magnesium sulfate, filtered and evaporated to give a light brown solid (7.9 g, 100\%)

LC-MS (Method A) 304.2/306.3 [M+H] ${ }^{+}$; RT 2.39 min .
(c) Compound 26 (step 3) 5-(4-bromo-2,3-difluoro-phenyl)-N-[(1S)-2-hydroxy-1-methyl-ethyl]oxazole-4-carboxamide

To a suspension of 5-(4-bromo-2,3-difluoro-phenyl)oxazole-4-carboxylic acid (1g, 3.3 mmol) in dry DCM (15 mL) under N_{2} was added oxalyl chloride ($0.42 \mathrm{~mL}, 4.9 \mathrm{mmol}$) drop-wise at room temperature, followed by catalytic DMF (1 drop). This was allowed to stir for 1 h . The mixture was then evaporated to dryness to give 5-(4-bromo-2,3-difluoro-phenyl)oxazole-4carbonyl chloride ($1.06 \mathrm{~g}, 3.3 \mathrm{mmol}$) as a yellow powder. This was then diluted with dry DCM (75 mL) and treated with ($2 S$)-(+)-2-aminopropan-1-ol ($0.54 \mathrm{~mL}, 6.9 \mathrm{mmol}$) under N_{2}. This was allowed to stir at room temperature overnight. After which time the mixture was washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ followed by brine $(30 \mathrm{ml})$. The organic layer was then dried through a hydrophobic frit and evaporated to dryness to give 5-(4-bromo-2,3-difluoro-
phenyl)-N-[(1S)-2-hydroxy-1-methyl-ethyl]oxazole-4-carboxamide ($1 \mathrm{~g}, 84 \%$) as a pale yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, \mathrm{J}=8.7,6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, \mathrm{J}=8.6$, 6.0, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H})$, 2.57 (br s, 1H), 1.29 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H}$); LC-MS (Method A) 361.2/363.2 [M+H] ${ }^{+}$; RT 2.38 min .
(d) Compound
(S)-3-Bromo-6-methyl-5,6-dihydro-8H-[1,4]oxazino[2,3,4-ij]oxazolo[4,5-c]quinolin-8-one

To a solution of 5-(4-bromo-2,3-difluoro-phenyl)-N-[(1S)-2-hydroxy-1-methyl-ethyl]oxazole-4-carboxamide ($1 \mathrm{~g}, 2.8 \mathrm{mmol}$) ,18-crown-6 ($0.82 \mathrm{~g}, 3.1 \mathrm{mmol}$) and potassium carbonate (1.91g, 13.9 mmol$) \quad$ in DMSO $(25 \mathrm{~mL})$ was heated at $140^{\circ} \mathrm{C}$ for 40 minutes. LCMS showed approx 70% product formation. The mixture was diluted with EA (200 ml) and washed with water ($5 \times 50 \mathrm{ml}$) and brine (50 ml). The organic extract was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent removed in vacuo to give a brown oil which was purified by flash chromatography eluting with 0-100\% EtOAc in heptane to give (S)-3-bromo-6-methyl-5,6-dihydro-8H-[1,4]oxazino[2,3,4-ij]oxazolo[4,5-c]quinolin-8-one (400 mg, 45\%)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 2 \mathrm{H}), 5.38-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{dd}, \mathrm{J}=$ 11.3, 1.3 Hz, 1H), 4.22 (dd, $J=11.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. LC-MS (Method A) 321.3/323.3 [M+H]+; RT 2.55 min.
(e) REDX06345 (S)-3-(4-amino-2,5-difluorophenyl)-6-methyl-5,6-dihydro-8H-[1,4]oxazino[2,3,4-ij]oxazolo[4,5-c]quinolin-8-one

Prepared using 4-amno-2,5-difuorobenzeneboronic acid pinacol ester and (S)-3-Bromo-6-methyl-5,6-dihydro-8H-[1,4]oxazino[2,3,4-ij]oxazolo[4,5-c]quinolin-8-one and a similar procedure to that described in REDX05557 ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.08$ (dd, J = 11.2, 6.4 Hz, 1H), $6.59(d d, J=10.7,7.5 H z, 1 H), 5.36-5.25(m, 1 H), 4.42(d d, 11.4$, 1.3 Hz, 1H), 4.15 (dd, 11.4, 2.4 Hz, 1H), 3.95 (s, 2H), 1.45 (d, $6.6 \mathrm{~Hz}, 3 \mathrm{H})$; LC-MS (Method A) 370.4 [M+H]+; RT 254 min.

REDX06530 - 7-(1H-benzimidazol-5-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

Prepared using 5-cyclopropyl-6-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one and tert butyl 5-bromobenzimidazole-1-carboxylate as
described in REDX04139 followed by deprotection of the Boc group using the method described in REDX07517
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta \mathrm{ppm} 12.59(\mathrm{~s}, 0.5 \mathrm{H}), 12.55(\mathrm{~s}, 0.5 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, \mathrm{~J}=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}$, $0.5 \mathrm{H}), 7.56(\mathrm{~s}, 0.5 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 0.5 \mathrm{H})$, 3.59 (m, 1H), 1.26 m, 2H), 0.58 (m, 2H); LC-MS (Method D) 357.4 [M+H]+; RT 1.54 min

REDX06615-7-(6-aminopyridazin-3-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one
(a) Compound 10 5-cyclopropyl-6-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-oxazolo[4,5-c]quinolin-4-one

To a solution of 7-bromo-5-cyclopropyl-6-dimethyl-oxazolo[4,5-c]quinolin-4-one (1.6 g, 5.14 mmol) in 1,2-dimethoxyethane (30 mL) under N_{2} was added potassium acetate ($1.5 \mathrm{~g}, 15.42$ $\mathrm{mmol})$ bis(pinacolato)diboron (1.7 g, 6.68 mmol and [1,1'bis(diphenylphosphino)ferrocene]palladium(II) chloride dichloromethane complex (210 mg , $0.26 \mathrm{mmol})$. The resulting reaction mixture was heated to $75^{\circ} \mathrm{C}$ for 72 h . On cooling the reaction mixture was partitioned between EtOAc (50 mL) and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$. The organic phase was separated and dried $\mathrm{OVER} \mathrm{MgSO}_{4}$, filtered and evaporated in vacuo. The resulting residue was purified by flash chromatography using a gradient of $0-100 \%$ EtOAc in DCM to give 5 -
cyclopropyl-6-dimethyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one ($1.6 \mathrm{~g}, 85 \%$) as a brown foam.

LC-MS (Method D) 367.5 [M+H] ${ }^{+}$; RT 2.83 min
(b) 7-(6-aminopyridazin-3-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

5-cyclopropyl-6-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one ($300 \mathrm{mg}, 0.82 \mathrm{mmol}$), 3-amino-6-bromopyridazine ($0.15 \mathrm{~mL}, 1.23 \mathrm{mmol}$), [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) chloride dichloromethane complex (67 $\mathrm{mg}, 0.08 \mathrm{mmol}$), cesium carbonate ($801 \mathrm{mg}, 2.46 \mathrm{mmol}$) in 1,2-dimethoxyethane (2.5 mL) / water (0.65 mL) was heated in the microwave at $60^{\circ} \mathrm{C}$ for 30 minutes under normal absorbance. After which time the mixture was diluted with MeOH and evaporated onto silica. This was then purified by ISCO chromatography using an eluent system of 0-40\% DCM/MeOH. Evaporation of the fractions containing the desired compound left a brown solid. The brown solid was further purified by dissolving the desired compound in methanol (*note* impurities do not dissolve in neat methanol). Methanol was then evaporated to dryness, leaving 7-(6-aminopyridazin-3-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one (6 mg, 2%) as a yellow solid

1H NMR: (400MHz DMSO-d6): $\delta 8.79$ (s, 1H) 7.83 (d, J=8.0 Hz, 1H) 7.51 ($d, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$) $7.45(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) 6.88(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}) 6.57(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}) 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~m}$, 2H) $0.52(\mathrm{~m}, 2 \mathrm{H})$.

LCMS: 334.4 [M+H] ${ }^{+}$; RT 1.38 min.

REDX06627-7-[4-(1-aminoethyl)phenyl]-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

5-cyclopropyl-6-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one ($198.93 \mathrm{mg}, 0.5400 \mathrm{mmol}$) , 1-(4-bromophenyl)ethanamine (0.12 mL , $0.8100 \mathrm{mmol})$, [1,1'-Bis(diphenylphosphino)ferrocene]Palladium(II) chloride dichloromethane complex ($44.36 \mathrm{mg}, 0.0500 \mathrm{mmol}$) , Cesium Carbonate (530.96 mg , $1.63 \mathrm{mmol})$ in 1,2-Dimethoxyethane ($4 . \mathrm{mL}, 0.5400 \mathrm{mmol}$) / Water (1 mL) was heated in the microwave at $60^{\circ} \mathrm{C}$ for 30 minutes. The mixture was then diluted with MeOH and evaporated onto silica and then purified by column chromatography using an eluent system of $0-30 \% \mathrm{DCM} / \mathrm{MeOH}$. The fractions containing the desired product were evaporated to dryness to give 7-[4-(1-aminoethyl)phenyl]-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4one ($5 \mathrm{mg}, 0.0139 \mathrm{mmol}, 2.561 \%$ yield) as a beige solid
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}$, $3 H), 1.61(d, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.07(\mathrm{~m}, 2 \mathrm{H}), 0.58-0.46(\mathrm{~m}, 2 \mathrm{H})$. (ES ${ }^{+}$, short BASIC): $1.63 \mathrm{~min}, \mathrm{~m} / \mathrm{z} 360.4[\mathrm{M}+\mathrm{H}]^{+}$

REDX07125-7-(2-amino-1H-1,3-benzodiazol-5-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one

To a stirred solution of 6-bromo-1H-1,3-benzodiazol-2-amine ($106 \mathrm{mg}, 0.50 \mathrm{mmol}$) and 4dimethylaminopyridine ($9 \mathrm{mg}, 0.07 \mathrm{mmol}$) in $\mathrm{DCM}(2 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}, 0.72 \mathrm{mmol})$ followed by a solution of di-tert-butyl dicarbonate ($123 \mathrm{mg}, 0.56 \mathrm{mmol}$) in DCM (1 mL). The resulting reaction mixture was further stirred at room temperature for 1 h . The solvent was removed under reduced pressure and the resulting residue purified by flash chromatography using a gradient of $0-80 \%$ EtOAc in Petroleum ether (40-60) to give an off-white solid of the desired Boc protected adducts as a mixture of isomers ($80 \mathrm{mg}, 51 \%$)

LC-MS (Method B) 312.0/314.0 [M+H] ${ }^{+}$; RT 2.56 min.

A mixture of the Boc protected adducts ($80 \mathrm{mg}, 0.26 \mathrm{mmol}$), 5-cyclopropyl-6-methyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxazolo[4,5-c]quinolin-4-one (83 mg, 0.23 mmol), 2-dicyclohexylphosphino-2', $4^{\prime}, 6^{\prime}$-triisopropylbiphenyl (11 mg, 0.02 mmol), XPhos Pd G2 (18 mg, 0.02 mmol$)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(222 \mathrm{mg}, 0.68 \mathrm{mmol})$ in 1,2-dimethoxyethane $(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ was irradiated with microwaves at $60^{\circ} \mathrm{C}$ for 80 min . The reaction mixture was then dry loaded onto silica and purified by flash chromatography using a gradient of 0-100\% EtOAc in Petroleum ether (40-60) to give an off white solid (70 mg) of the desired Suzuki adducts as a mixture of Boc protected isomers ($70 \mathrm{mg}, 66 \%$).

LC-MS (Method B) $472.1[\mathrm{M}+\mathrm{H}]^{+}$; RT $2.18 / 2.31 \mathrm{~min}$.

To a stirred solution of the Suzuki adducts ($70 \mathrm{mg}, 0.15 \mathrm{mmol}$) in DCM (1 mL) was added TFA $(0.25 \mathrm{~mL}, 3.27 \mathrm{mmol})$. The resulting reaction mixture was stirred at room temperature for 1.5 h and then quenched with saturated aq. NaHCO_{3}. The organic layer was separated, dried over MgSO_{4} and the solvent removed in vacuo. The resulting residue was triturated with EtOAc and the resulting solid filtered and dried under vacuum to give 7-(2-amino-1H-1,3-benzodiazol-6-yl)-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one ($23 \mathrm{mg}, 42 \%$) as an off-white solid.
${ }^{1} \mathrm{H}$ NMR (400MHz, CD 3 OD): $\delta \mathrm{ppm} 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 3.66(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, 2 \mathrm{H}), 0.68(\mathrm{~m}, 2 \mathrm{H})$; LC-MS (Method B) $372.1[\mathrm{M}+\mathrm{H}]^{+}$; RT 1.67 min .

REDX07368-7-(4-amino-2,5-difluoro-phenyl)-6-chloro-5-cyclopropyl-oxazolo[4,5-c]quinolin-4one

(a) Compound 21 (step 1) 4-bromo-3-chloro-2-fluoro-benzoyl chloride

4-Bromo-3-chloro-2-fluoro-benzoic acid (11.9 g, 47.11 mmol) 4-bromo-3-chloro-2-fluorobenzoic acid ($11.9 \mathrm{~g}, 47.11 \mathrm{mmol}$) in DCM (60 mL) was treated with oxalyl chloride (5.98 mL , 70.67 mmol) followed by catalytic DMF (1 drop). The mixture was stirred for 1 h , then
evaporated and coevaporated from DCM (x3) and the resultant product was used immediately in the following reaction. Yield presumed quantitative.

Ethyl Isocyanoacetate ($1.91 \mathrm{~mL}, 17.47 \mathrm{mmol}$) in THF (25 mL) was cooled to $0^{\circ} \mathrm{C}$. Triethylamine ($6.64 \mathrm{~mL}, 47.66 \mathrm{mmol}$) was added dropwise followed by the addition of 4-bromo-3-chloro-2-fluoro-benzoyl chloride ($4.3 \mathrm{~g}, 15.89 \mathrm{mmol}$) in THF (20 mL) over 5 min . The reaction was then allowed to warm to rt and stirred o / n. The mixture was diluted with ethyl acetate (250 mL) and washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, sat. $\mathrm{NaHCO}_{3}(3 \times 50 \mathrm{ml})$ and brine (50 mL). The organic layer was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford ethyl 5-(4-bromo-3-chloro-2-fluoro-phenyl)oxazole-4-carboxylate ($4.58 \mathrm{~g}, 83 \%$) as a brown solid. LC-MS (Method A) 347.9/349.9 [M+H] ${ }^{+}$; RT 3.34 min.

(b) Compound 21 (step 2) 5-(4-bromo-3-chloro-2-fluoro-phenyl)-N-cyclopropyl-oxazole-4carboxamide

Ethyl 5-(4-bromo-3-chloro-2-fluoro-phenyl)oxazole-4-carboxylate ($4.6 \mathrm{~g}, 13.14 \mathrm{mmol}$) in 1,4dioxane (150 mL) was treated with lithium hydroxide hydrate ($1.76 \mathrm{~g}, 73.47 \mathrm{mmol}$) (1 M aq) and stirred at $\mathrm{rt} \mathrm{o} / \mathrm{n}$. The reaction mixture was then evaporated to remove dioxane, then diluted with 1 M NaOH (aq. 50 mL) and washed with ethyl acetate ($2 \times 50 \mathrm{~mL}$). The aqueous layer was then acidified with 1 M HCl and extracted with ethyl acetate $(2 \times 150 \mathrm{~mL})$ and the organic extracts were combined and washed with brine (100 mL). The combined organics
were then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to give 5-(4-bromo-3-chloro-2-fluoro-phenyl)oxazole-4-carboxylic acid as a pale yellow oil (3.54 g, 84\%)

This was suspended in DCM (60 mL) and oxalyl chloride ($1.4 \mathrm{~mL}, 16.57 \mathrm{mmol}$) was added, followed by one drop of DMF. The reaction mixture was then allowed to stir at rt for 1 h , until gas evolution ceased. The solvent was removed from the reaction mixture and the residue was re-dissolved and coevaporated from DCM (x 3) to remove residual oxalyl chloride. DCM (50 mL) was then added to the crude reaction mixture followed by cyclopropylamine $(1.37 \mathrm{~mL}, 19.81 \mathrm{mmol})$ dropwise over 5 min and stirred at rt for 1.5 h . The mixture was then diluted with DCM (100 mL) and washed with $0.5 \mathrm{~N} \mathrm{HCl}(2 \times 50 \mathrm{~mL})$ then sat. NaHCO_{3} soln (3 x 50 mL) and brine (50 mL). Dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give 5-(4-bromo-3-chloro-2-fluoro-phenyl)-N-cyclopropyl-oxazole-4-carboxamide (3.68g, 10.234mmol, 92% yield) as a yellow powder.

LC-MS (Method A) 38.9/360.9 [M+H] ${ }^{+}$; RT 3.04 min.

(c) Compound 21 (step 3) 7-Bromo-6-chloro-5-cyclopropyl-oxazolo[4,5-c]quinolin-4-one

To a solution of 5-(4-bromo-3-chloro-2-fluoro-phenyl)- N -cyclopropyl-oxazole-4-carboxamide $(2.8 \mathrm{~g}, 7.84 \mathrm{mmol})$ in DMF (25 mL) was added potassium phosphate tribasic ($5.0 \mathrm{~g}, 23.53$ $\mathrm{mmol})$ and the reaction mixture heated to $120^{\circ} \mathrm{C}$ for 2 h . At this point the reaction mixture was diluted with water (30 mL) and extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The combined organic
layers were washed with brine (25 mL), dried over MgSO_{4}, filtered and concentrated in vacuo to give crude product. Further purification by flash chromatography eluting with a gradient (20 \% to 75 \% EtOAc in Petrol Ether) gave the 7-bromo-6-chloro-5-cyclopropyl-oxazolo[4,5-c]quinolin-4-one (1g, $38 \quad \%$) as a light yellow solid. LC-MS (Method A) 339.0/341.0 [M+H] ${ }^{+}$; RT 2.61 min.
(d) REDX07368 7-(4-amino-2,5-difluoro-phenyl)-6-chloro-5-cyclopropyl-oxazolo[4,5-c]quinolin-4one

To a solution of 7-bromo-6-chloro-5-cyclopropyl-oxazolo[4,5-c]quinolin-4-one (38 mg, 0.11 mmol), 4-amino-2,5-difluorobenzeneboronic acid pinacol ester ($37 \mathrm{mg}, 0.15 \mathrm{mmol}$) and cesium carbonate ($109 \mathrm{mg}, 0.34 \mathrm{mmol}$) in a mixture of monoglyme (1 mL) and water (0.3 mL) was added 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl ($5 \mathrm{mg}, 0.01 \mathrm{mmol}$) and XPhos Pd G2 ($9 \mathrm{mg}, 0.01 \mathrm{mmol}$). The reaction mixture was then heated to $60^{\circ} \mathrm{C}$ for 1 h using a microwave reactor. The reaction mixture was then evaporated onto silica and purified by flash chromatography using a gradient of 100% pet ether to 100% EtOAc. Product containing fractions were combined to yield 7-(4-amino-2,5-difluoro-phenyl)-6-chloro-5-cyclopropyl-oxazolo[4,5-c]quinolin-4-one (2 mg, 3.6 \%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{ppm} 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95 (dd, J = $11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61$ (dd, J = $11.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H})$, 1.55 (m, 2H), 1.32 (m, 2H);

LC-MS (Method A) 388.4/390.4 [M+H] ${ }^{+}$; RT 2.68 min.

REDX07473 - 2-(aminomethyl)-5-cyclopropyl-6-methyl-7-(1H-pyrazolo[3,4-b]pyridin-5-yl)oxazolo[4,5-c]quinolin-4-one
(a) tert-butyl 5-[2-[(tert-butoxycarbonylamino)methyl]-5-cyclopropyl-6-methyl-4-oxo-oxazolo[4,5-c]quinolin-7-yl]pyrazolo[3,4-b]pyridine-1-carboxylate

Prepared using tert-butyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazolo[3,4-b]pyridine-1-carboxylate and tert-butyl $\quad \mathrm{N}$-(\{7-bromo-5-cyclopropyl-6-methyl-4-oxo-[1 ,3]oxazolo[4,5-c]quinolin-2-yl\}methyl)carbamate as described for REDX04139.

LC-MS (Method E) 587.3, [M+H]+; RT 2.91 min.
(b) 2-(aminomethyl)-5-cyclopropyl-6-methyl-7-(1H-pyrazolo[3,4-b]pyridin-5-yl)oxazolo[4,5-c]quinolin-4-one

To a stirred solution of tert-butyl 5-[2-[(tert-butoxycarbonylamino)methyl]-5-cyclopropyl-6-methyl-4-oxo-oxazolo[4,5-c]quinolin-7-yl]pyrazolo[3,4-b]pyridine-1-carboxylate ($49 \mathrm{mg}, 0.08$ mmol) / tert-butyl \quad-[[5-cyclopropyl-6-methyl-4-oxo-7-(1H-pyrazolo[3,4-b]pyridin-5-yl)oxazolo[4,5-c]quinolin-2-yl]methyl]carbamate ($41 \mathrm{mg}, 0.08 \mathrm{mmol}$) in DCM (1 mL), was added trifluoroacetic acid ($0.15 \mathrm{~mL}, 1.96 \mathrm{mmol}$) at rt . After 2 h , the reaction mixture was put in the fridge overnight. This was then diluted with DCM and washed with saturated sodium bicarbonate, passed through a hydrophobic frit. The filtrate was evaporated to dryness. This was then purified by column chromatography, eluting with $0-5 \% \mathrm{MeOH} / \mathrm{DCM}$ to give the desired compound. 15 mg , 46\%
${ }^{1} \mathrm{H}$ NMR (DMSO-d6) $\delta 8.63(\mathrm{~s}, 1 \mathrm{H}) 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.42$ ($\mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}) 0.58(\mathrm{~m}, 2 \mathrm{H})$. LC-MS (Method B) 387.1, $[\mathrm{M}+\mathrm{H}]^{+}$; RT 1.23 min .

REDX07517-2-(aminomethyl)-5-cyclopropyl-7-(1H-indazol-5-yl)-6-methyloxazolo[4,5-c]quinolin-4(5H)-one

(a) Compound (44) 2-(aminomethyl)-7-bromo-5-cyclopropyl-6-methyl-[1 ,3]oxazolo[4,5-c]quinolin-4-one

To a solution of 2-(azidomethyl)-7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4- one ($1.3 \mathrm{~g}, 3.47 \mathrm{mmol}$) in THF $(20 \mathrm{~mL}) / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added triphenylphosphine ($1.37 \mathrm{~g}, 5.21 \mathrm{mmol}$). This was heated to reflux for 1 h . The reaction mixture was evaporated to remove the THF. The remaining aq. was extracted with EtOAc followed by DCM and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to give a crude solid. The crude was purified by column chromatography using 0 to 7% methanolic ammonia (1 M) in DCM to yield 2-(aminomethyl)-7-bromo-5-cyclopropyl-6- methyl-[1 ,3]oxazolo[4,5-c]quinolin-4-one ($1.05 \mathrm{~g}, 87 \%$) as a solid.

LC-MS (Method D) 348.0/350.0 [M+H]+; RT 1.58 min
(b) Compound (45) tert-butyl N-(\{7-bromo-5-cyclopropyl-6-methyl-4-oxo-[1 ,3]oxazolo[4,5-

c]quinolin-2-yl\}methyl)carbamate

To a solution of 2-(aminomethyl)-7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4- one ($1.05 \mathrm{~g}, 3.02 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.5 \mathrm{ml}, 3.62 \mathrm{mmol})$ in $\mathrm{DCM}(15 \mathrm{ml})$ was added di-tert- butyl dicarbonate ($723 \mathrm{mg}, 3.32 \mathrm{mmol}$) in DCM (2 ml) and stirred at room temperature for 2 h . The reaction mixture was concentrated then purified by column chromatography, eluting with $0-80 \%$ EtOAc in petroleum ether (40-60) to give tert-butyl N-(\{7-bromo-5-cyclopropyl-6- methyl-4-oxo-[1 ,3]oxazolo[4,5-c]quinolin-2 yl\}methyl)carbamate (1.0 g, 74% yield) as a pale solid.
(c) tert-butyl 5-(2-(((tert-butoxycarbonyl)amino)methyl)-5-cyclopropyl-6-methyl-4-oxo-4,5-dihydrooxazolo[4,5-c]quinolin-7-yl)-1H-indazole-1-carboxylate

Prepared using tert-butyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indazole-1carboxylate and tert-butyl N -(\{7-bromo-5-cyclopropyl-6-methyl-4-oxo-[1 ,3]oxazolo[4,5-c]quinolin-2- yl\}methyl)carbamate as described for REDX04139.

LC-MS (Method E) 586.2, [M+H] ${ }^{+}$; RT 3.42 min.
(d) 2-(aminomethyl)-5-cyclopropyl-7-(1H-indazol-5-yl)-6-methyloxazolo[4,5-c]quinolin-4(5H)one

To a stirred solution of tert-butyl 5-[2-[(tert-butoxycarbonylamino)methyl]-5-cyclopropyl-6-methyl-4-oxo-oxazolo[4,5-c]quinolin-7-yl]indazole-1-carboxylate ($34 \mathrm{mg}, 0.0600 \mathrm{mmol}$) / tert-butyl $\quad N$-[[5-cyclopropyl-7-(1H-indazol-5-yl)-6-methyl-4-oxo-oxazolo[4,5-c]quinolin-2-
yl]methyl]carbamate ($28 \mathrm{mg}, 0.06 \mathrm{mmol}$) in DCM (0.5 mL) was added trifluoroacetic acid (0.1 $\mathrm{mL}, 1.31 \mathrm{mmol})$. This was stirred at rt for 1 h . The reaction mixture was diluted with DCM and washed with saturated sodium bicarbonate. The DCM extract was then dried over sodium sulfate, filtered and evaporated to dryness. The title compound was purified by column chromatography eluting with $0-5 \% 1 \mathrm{M}$ methanolic ammonia (15 mg, 67\%).
${ }^{1} \mathrm{H} \operatorname{NMR}(\mathrm{MeOD}) \delta: 13.5(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, 1 \mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}), 7.65(\mathrm{~d}, 1 \mathrm{H}), 7.44(\mathrm{~m}$, $1 \mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{bs}, 3 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 2 \mathrm{H})$ 0.70-0.68(m, 2H). LC-MS (Method E) 386.1, [M+H]+; RT 4.95 min.

REDX07910-2-amino-5-(5-cyclopropyl-6-methyl-4-oxo-oxazolo[4,5-c]quinolin-7-yl)benzonitrile

Prepared using 2-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline and 7-bromo-5-cyclopropyl-6-methyl-oxazolo[4,5-c]quinolin-4-one as described for REDX04139.
${ }^{1} \mathrm{H}$ NMR (400MHz, DMSO-d 6): $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}) 7.77(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}) 7.49(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.43$ (dd, J=8.7,2.2 Hz, 1H) $7.28(d, J=7.9 H z, 1 H) 6.91(d, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) 6.30(\mathrm{~s}, 2 \mathrm{H}) 3.59-3.52(\mathrm{~m}$, 1H) 1.27-1.20 (m, 2H) $0.51(\mathrm{tt}, J=5.5,2.8 \mathrm{~Hz}, 2 \mathrm{H})$ Methyl group under DMSO peak.

LC-MS (Method A): $2.35 \mathrm{~min}, \mathrm{~m} / \mathrm{z} 355.0[\mathrm{M}+\mathrm{H}]^{+}$

Antibacterial susceptibility testing

Culturing and antibacterial susceptibility testing were performed in line with CLSI guidelines ${ }^{1}$. MICs were performed in triplicate and were determined by the broth microdilution method for routine testing and by the agar dilution method prior to determination of frequency of resistance.

References

1. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard-Ninth Edition M07-A9. CLSI, Wayne, PA, USA, 2012.
