Supplementary Information

Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives

Thitinan Aiebchun^{a,†}, Kamonpan Sanachai^{a,†}, Panupong Mahalapbutr^{b,†}, Supaphorn Seetaha^c, Lueacha Tabtimmai^d, Phornphimon Maitarad^e, Iakovos Xenikakis^f, Athina Geronikaki^f, Kiattawee Choowongkomon^c, Thanyada Rungrotmongkol^{a,g,*}

^a Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

^b Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

^c Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

^d Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology of North Bangkok, Bangkok, Thailand

^e Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, PR China

^f Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

^g Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

* Corresponding author. Tel: +662 2185426; Fax: +662 2185418

⁺These three authors contributed equally to this work

E-mail address: t.rungrotmongkol@gmail.com (T. Rungrotmongkol)

Table of Contents

1. Figures S1. Superimposition of ligands between X-ray structure and GOLD docking	S1
2. Figures S2. IC_{50} curves of compounds and know drugs towards focused cells	S2
3. Figures S3. Cytotoxicity of compounds and know drugs towards Vero cells	S3
4. Figures S4. Kinase inhibitory activity screening of compounds towards JAK2 and	
EGFR-TK at 1 μ M	S4
5. Figures S5. The fitness scores of focused thiazole derivatives towards JAK2 and EGFR-TK	S 5
6. Table S1. Interactions of thiazole-based chalcones derivatives as well as the known drugs	
towards JAK2 and EGFR-TK	S6
7. Detail of synthesis and characterization of five compounds (10, 11, 12, 20 and 25) ³⁴	S9
8. Figure S6. IC ₅₀ of kinase inhibitory activity of compounds towards JAK2 and EGFR-TK	\$10

1. Figures S1

Figure S1. Superimposition of ligands between X-ray structure (black) and GOLD docking (green).

JAK2 complexed with tofacitinib (A) and EGFR-TK complexed with erlotinib (B).

2. Figures S2

Figure S2. IC₅₀ curves of compounds and know drugs towards focused cells (A) TF1, HEL and (B) A549, A431. Data are represented as means \pm SEM of triplicate experiments.

3. Figure S3

Figure S3. Cytotoxicity of compounds and know drugs towards Vero cells. Data are represented as means ± SEM of triplicate experiments.

4. Figures S4

Figure S4. Kinase inhibitory activity screening of compounds towards JAK2 and EGFR-TK at 1 μ M. Data are represented as means ± SEM from duplicate independent experiments (n=2). * $p \le 0.05$ and *** $p \le 0.001$ vs. erlotinib in EGFR-TK.

5. Figures S5

Figure S5. The fitness scores of focused thiazole derivatives towards JAK2 and EGFR-TK.

6. Table S1

Table S1. Interactions of thiazole-based chalcones derivatives as well as the known drugs towards

JAK2 and EGFR-TK. Underlined text represents the overlapped residues with the known drugs.

		Interactions					
Protein	Compounds	H bond	Van der Waals	Pi-	Pi-	Pi-Alkyl	Amide-Pi
				sulfur	sigma	-	Stacked
JAK2	11	<u>E930,</u>	<u>K857</u> , <u>S862</u> ,	-	-	<u>A880</u> ,	G856,
		<u>L932</u>	<u>V911</u> , M929,			<u>V863</u> ,	L855
			<u>P933</u> , <u>G935</u> ,			Y931,	
			<u>5936, G993</u>			<u>L983</u>	
	12	<u>E930,</u>	<u>K857</u> , V863,	-	G856	<u>L855</u> ,	-
		<u>L932</u>	<u>V911</u> M929,			<u>A880</u> ,	
			<u>P933</u> , <u>G935</u> <u>S936</u>			Y931,	
						<u>L983</u>	
	25	K857,	<u>G858</u> , E930,	-	G856	<u>L855</u> ,	-
		<u>L932</u>	<u>Y931</u> , <u>P933</u> ,			<u>V863</u> ,	
			<u>G935</u> , <u>S936</u> ,			<u>A880</u> ,	
			D939, <u>G993</u>			V911,	
						M929,	
						<u>L983</u>	
	Ruxolitinib	E930,	G856, K857,	M929	-	A880,	-
		L932	G858, G861,			L855,	
			S862, K882,			V863,	
			V911, Y931,			L983	
			P933, G935,				
			S936, R980,				
			N981, I982,				
			G993, D994				
EGFR-TK	25	K721,	<u>V702</u> , <u>K704</u> ,	-	-	<u>L694</u>	-
		<u>M769</u> ,	<u>A719</u> , <u>E738</u> ,				
		D831	<u>M742</u> , <u>L764</u> ,				
			<u>T766</u> , <u>Q767</u> ,				
			<u>L768</u> , <u>P770</u> ,				
			<u>G772</u> , C773,				
			<u>L820, T830</u>				

	Compounds	Interactions					
Protein		H bond	Van der Waals	Pi- sulfur	Pi- sigma	Pi-Alkyl	Amide-Pi Stacked
	Erlotinib	M769	G695, G697,	C751	-	L694,	-
			F699, V702,			K721	
			K704, A719,				
			E738, M742,				
			L753, L764, I765,				
			T766 <i>,</i> Q767,				
			L768, P770,				
			G772, L820,				
			T830, D831				

7. Detail of synthesis and characterization of five compounds (10, 11, 12, 20 and 25)³⁴

Synthesis and characterization of five compounds (10, 11, 12, 20 and 25) were published and obtained from Tratrat C. et al., 2019 ³⁴as follows:

7.1. General Method A (Basic Catalysis)

To a solution of aromatic aldehyde (1 mmol) in 10% NaOH (3-4 mL) at 0° a solution of appropriate 1-(4-methyl-2-alkylamino) thiazol-5-yl) ethanone (1 mmol) in methanol (4.0-4.1 mL), was added dropwise. The solution was maintained at 0 °C for 1.5 h and then was allowed to stir at room temperature. After some time (24-48 h), the solid started separating out. The solid was filtered under vacuum and recrystallized from dioxane or ethanol to give the title chalcones.

7.2 General Method B (Acid Catalysis)

To a solution of aromatic aldehyde (1mmol) in conc. H2SO4 (1 -1.5 mL at 0°, a solution of appropriate 1- (4-methyl-2- (alkylamino)thiazol-5-yl) ethanone (1 mmol) in methanol (4.0-4.1 mL), was added dropwise. The solution was maintained at 0 °C for 1.5 h and then was allowed to stir at room temperature. After some time (24-48 h), the solid started separating out. The solid was filtered under vacuum and recrystallized from dioxane or ethanol to give the title chalcones

7.3 (E)- 1-(4-methyl-2-(methylamino)thiazol-5-yl)-3-(thiophen-2-yl) prop-2-en-1-on (10)

Yield: 45.2%, m.p. 228- 229 oC, Rf: 0.46 (CHCl3:MeOH,9,5:0,5), IR: (cm-1, Nujol): 3203 (NH), 3068 (C-H vinyl.), 1628 (C=O), 1602 (C=C), 1559 (C-Harom.). 1 H-NMR: (δ ppm, DMSO-d6/CDCl3, 300 MHz): 2.52 (s, 3H, thiazole-4'- CH3), 2.88 (s, 3H, N-CH3), 6.91 (d, J=15 Hz, 1H, CO -CH), 7.09-7.11 (t, 1H, thiophene-4'), 7.42 (d, J=6 Hz, 1H, thiophene-3 '), 7.55 (d, J=6 Hz, 1H, thiophene-5'), 7.67 (d, J=15 Hz, 1H, thiophene-2'-CH), 8.31 (s, 1H, NH). Anal. Calc. for C12H12N2OS2: C: 54.52; H: 4.58; N: 10.60%. Found: C: 54.55; H: 4.56; N: 10.82%.

7.4 (E)-1-(4-methyl-2 -(methylamino)thiazol-5-yl)-3-(thiazol-2-yl) prop-2-en-1-on (11)

Yield: 67.2%, m.p. 227- 228 oC, Rf: 0.32 (CHCl3: MeOH, 9.5:0.5). IR: (cm-1, Nujol): 3207 (NH), 3072 (C-H vinyl.), 1628 (C=O), 1605 (C=C), 1556 (C-H arom.). 1 H-NMR: (δ ppm, DMSO-d6/CDCl3, 300 MHz): 2.55 (s, 3H, thiazole-4'- CH3), 2.89 (s, 3H, CH3-N), 7.42 (d, J=15 Hz, 1H, CO-CH), 7.60 (d, J=15 Hz, 1H, thiazole-2''- CH), 7.72 (d, J=3 Hz, 1H, thiazole 5''), 7.92 (d, J=3 Hz, 1H, thiazole-4''), 8.43 (s, 1H, NH). Anal. Calc. for C11H11N3OS2: C: 49.79; H: 4.18; N: 15.84%. Found: C: 49.50; H: 4.21; N: 15.61%.

7.5 (E)- 1-(4-methyl-2-(methylamino)thiazol-5-yl)-3-(thiophen-2-yl) prop-2-en-1-on (12)

Yield: 29.0%, m.p. 212-213 oC, Rf: 0.47 (CHCl3: MeOH, 9.5:0.5). IR: (cm-1, Nujol): 3198 (NH), 3082 (C-H vinyl.), 1634 (C=O), 1597 (C=C), 1560 (C-H arom.). H-NMR: (δ ppm, DMSO-d6, 300 MHz): 2.53 (s, 3H, thiazole-4'-CH3), 2.86 (s, 3H, CH3-N), 7.10 (d, J=15 Hz, 1H, CO-CH), 7.52-7.61 (m, 4H, thiphene-3'-CH,thiphene. 2',4',5'), 7.96 (s, 1H, NH). Anal. Calc. for C12H12N2OS2: C: 54.52, H: 4.58, N: 10.60%. Found: C: 54.10, H: 4.5, N: 10.44%.

7.6 (E)-1- (4--methyl-2-(ethylamino)thiazol-5-yl)-3-(4-hydroxyphenyl) prop-2-en-1-on (20)

Method B. Reaction time30 h. Yield: 25.5%, m.p. 246- 248 oC (dioxane), Rf: 0.44 (toluene:EtOH: 8/2). IR: (cm-1, KBr) 3265 (NH), 1645 (C=O).1H- NMR: (δ ppm, 250 MHz, DMSO-d 6) δ = 1.19 (t, J= 7,1 Hz, 3 H, CH3CH2N-), 2.56 (s, 3 H, thiazole 4'-CH3), 3.21- 3.36 (m, 2 H, N-CH2CH3), 6.82 (d, J=7.7 Hz, 2 H, Ar. 2',6'), 7.10 (d, J=15.1 Hz, 1 H, allylic CO-CH), 7.51 (d, J=16.1 Hz, 1 H, allylicAr-CH), 7.61 (d, J= 7.6 Hz, 2 H, Ar. 3',5'), 8.80 (br, 1 H, NH), 10.03 (s, 1 H, PhOH). Anal. Calc. for C15H16N2O2S (288.09): C:62.48; H: 5.59; N: 9.71%. Found: C:62.49; H: 5.57; N: 9.70%.

7.7 (E)-1-(4 --methyl-2-(methylamino)thiazol-5-yl)-3-(4-hydroxyphenyl) prop-2-en-1-on (25)

Method B. Reaction time 30 h. Yield: 17.1%, m.p. 253- 255 oC (dioxane), Rf: 0.41 (toluene:EtOH: 8/2). IR: (cm-1, KBr) 3209 (NH), 1650 (C=O). 1H-NMR: (δ ppm, 250 MHz, DMSO-d6) δ = 2,57 (s, 3 H, thiazole 4'-CH3), 2.93 (s, 3 H, N-CH3), 6.83 (d, J=8,2 Hz, 2H, Ar. 2',6'), 7.09 (d, J=15,3 Hz, 1H, allylic CO-CH), 7.52 (d, J=15.4 Hz, 1 H, allylic Ar -CH), 7.60 (d, J=8.2 Hz, 2 H, Ar. 3',5'), 8.91 (br, 1 H, NH). Anal. Calc. for for C14H14N2O2 S (274.8): C 61.29; H: 5.14; N: 10.21%. Found: C:61.32; H: 5.15; N: 10.22%.

8. Figure S6

Figure S6. IC₅₀ of kinase inhibitory activity of compounds towards JAK2 and EGFR-TK. Data are represented as means ± SEM from triplicate independent experiments (n=3). ** $p \le 0.01$ and **** $p \le 0.0001$ vs. erlotinib in EGFR-TK.