Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2020

THEORETICAL EVALUATION OF HEXAZINANE AS A BASIC COMPONENT OF NITROGEN-RICH ENERGETIC ONIUM SALTS

Sergey V. Bondarchuk

Department of Chemistry and Nanomaterials Science,

Bogdan Khmelnitsky Cherkasy National University,

blvd. Shevchenko 81, 18031 Cherkasy, Ukraine.

Tel: (+3) 80472 37-65-76;

Fax: (+3) 80472 37-21-42;

E-mail: bondchem@cdu.edu.ua

Molecular Systems Design & Engineering

LIST OF SUPPLEMENTARY FIGURES, TABLES AND EQUATIONS:

Figure S1. Different projections of a unit cell of three <i>a</i> , <i>a</i> , <i>a</i> , <i>a</i> , <i>a</i> , <i>a</i> polymorphs of hexazinane	S3
Figure S2. Different projections of the e,e,e,e,e,e polymorph of hexazinane	S4
Table S1. Fractional coordinates of atoms for hexazinane polymorphs	S5
Table S2. The selected crystal habit parameters in vacuum predicted by the attachment energy method	S5
Figure S3. Stable surfaces of crystal habits of the predicted hexazinane polymorphs	S5
Figure S4. Dynamical and mechanical stability criteria for different Laue classes	S6
Table S3. The calculated elastic stiffness constants C_{ij} (GPa) of hexazinane polymorphs	S7
Figure S5. Phonon dispersion and 3D presentation of the Young modulus for the <i>e</i> ,	S8
Figure S6. The calculated IR spectra along with the temperature dependence of main thermodynamic functions of hexazinane polymorphs	S8
Table S4. Comparison of the prediction of the gas phase enthalpies of formation for the benchmark set molecules	S9
Table S5. Comparison of the prediction of the solid state enthalpies of formation for the benchmark set crystals	S9
Table S6. The relative energies (kJ mol ⁻¹) of salts 1-10 in several space groups predicted by Polymorph	S9
Figure S7. The calculated IR spectra of salts 1-10	S10
Figure S8. Finite size models used for the gas phase enthalpy of formation and lattice energy calculations	S11
Figure S9. Temperature dependence of the main thermodynamic functions of salts 1-10	S12
Coefficients of the NASA polynomials for hexazinane and its salts in the formatted form for the CEA2 program	S12
Table S7. Decomposition schemes corresponding to the maximum propulsive performance	S14
Table S8. Mole fractions of species formed upon decomposition of the studied salts at various Ae/At ratios of FAC	S14

Figure S1. Different projections of a unit cell of three *a*,*a*,*a*,*a*,*a*,*a* polymorphs of hexazinane.

Figure S2. Different projections of the *e*,*e*,*e*,*e*,*e*,*e* polymorph of hexazinane.

Table S1. Fractional coordinates of atoms for hexazinane polymorphs

Space group	Atom	x	У	Z	Wyckoff position
C2/m	N1	0.612	0	0.294	4i
	N2	0.616	0.159	0.165	8j
	Н3	0.389	0	0.254	4i
	H4	0.861	0.173	0.245	8j
$P2_{1}/c$	N1	0.310	0.194	0.278	4e
	N2	0.280	0.201	0.405	4e
	N3	0.572	0.077	0.691	4e
	H4	0.484	0.352	0.374	4e
	Н5	0.068	0.072	0.274	4e
	H6	0.782	0.217	0.839	4e
Cmca	N1	0	0.591	-0.342	8f
	N2	0.156	0.493	-0.415	16g
	H3	0	0.788	-0.352	8f
	H4	0.171	0.308	-0.383	16g
$R\overline{3}$	N1	0.826	0.115	0.199	18f
	H2	0.605	0.089	0.235	18f

Table S2. The selected crystal habit parameters in vacuum predicted by the attachment energy method

Space group	hkl	Multiplicity	$d_{hkl}({ m \AA})$	% Area	% Total area	Vertices
<i>C</i> 2/ <i>m</i>	(1 -1 1)	4	0.996	17.208	68.833	4
	(1 1 -1)	2	1.100	15.584	31.167	4
$P2_{1}/c$	(2 0 -2)	2	0.260	34.273	68.546	4
	(0 1 1)	4	1.131	7.864	31.454	4
Стса	(1 -1 2)	4	1.638	18.864	75.455	4
	(1 1 0)	2	2.518	12.272	24.545	4

Figure S3. Stable surfaces of crystal habits of the predicted hexazinane polymorphs

Figure S4. Dynamical and mechanical stability criteria for different Laue classes.

C2/m	C _{ij}	1	2	3	4	5	6
	1 2 3 4	42.06260 4.01355 5.89313	4.01355 64.15315 16.56287	5.89313 16.56287 44.31510	36 23525	8.91792 -19.13245 -3.46890	-6 22105
	5	8.91792	-19.13245	-3.46890	6 22105	42.73995	20.21600
	Sii	1	2	3	-0.22105	5	6
	1 2 3 4	0.0259387 -0.0029551 -0.0028905	-0.0029551 0.0201496 -0.0064245	-0.0028905 -0.0064245 0.0253343	0.0291367	-0.0069697 0.0091151 -0.0002166	0.0089658
	5 6	-0.0069697	0.0091151	-0.0002166	0.0089658	0.0289144	0.0522225
<i>P</i> 2 ₁ / <i>c</i>	C _{ij}	1	2	3	4	5	6
	1 2 3 4	40.99780 1.60782 22.01420	1.60782 40.85040 11.79897	22.01420 11.79897 43.39145	23.70325	1.59407 -3.35288 4.03962	-5.32393
	5 6	1.59407	-3.35288	4.03962	-5.32393	9.37185	15.18345
	S_{ij}	1	2	3	4	5	6
	1 2 3 4	0.0342371 0.0044474 -0.0189454	0.0044474 0.0287949 -0.0114337	-0.0189454 -0.0114337 0.0373463	0.0457949	0.0039339 0.0144736 -0.0169657	0.0160575
	5	0.0039339	0.0144736	-0.0169657	0.0160575	0.1185243	0.0714916
Cmca	C _{ii}	1	2	3	4	5	6
	1 2 3 4 5 6	121.48335 55.85190 33.48770	55.85190 51.44285 30.38327	33.48770 30.38327 45.45550	14.08230	19.42625	4.74650
	S_{ij}	1	2	3	4	5	6
	1 2 3 4 5 6	0.0164378 -0.0176701 -0.0002990	-0.0176701 0.0511138 -0.0211476	-0.0002990 -0.0211476 0.0363552	0.0710111	0.0514767	0.2106816
$R\overline{3}$	C_{ij}	1	2	3	4	5	6
	1	53.93	-13.63	11.29	7.91	-5.75	
	2 3 4 5 6			46.22	18.89		
	S_{ij}	1	2	3	4	5	6
	1 2 3 4 5	0.0230781	0.0056656	-0.0070189 0.0250654	-0.0072903 0.0622836	0.0053047	

Table S3. The calculated elastic stiffness constants C_{ij} (GPa) of hexazinane polymorphs

Figure S5. Phonon dispersion and 3D presentation of the Young modulus for the *e,e,e,e,e* polymorph of hexazinane.

Figure S6. The calculated IR spectra along with the temperature dependence of main thermodynamic functions of hexazinane polymorphs.

Table S4.	Comparison o	of the prediction	of the gas phas	e enthalpies of	formation for t	he benchmark set i	nolecules

Molecule	$\Delta H_{\rm gas}$, kJ mol ⁻¹ (calculated)	$\Delta H_{\rm gas}$, kJ mol ⁻¹ (experimental)	Δ , kJ mol ⁻¹
NH ₃	-46.4	-45.9^{a}	0.5
NH_2NH_2	94.6	95.4^{a}	0.8
NH ₂ OH	-41.2	-50.2^{b}	9.0
CH ₃ NH ₂	-23.4	-23.5^{a}	-0.1
$(CH_3)_2NH$	-16.4	-19.0 ^a	-2.6
HNO ₃	-136.4	-134.3ª	2.1
HNO ₂	-77.7	-76.7 ^a	1.0
NO_2	15.6	33.1 ^a	17.5
NO	82.5	90.3 <i>a</i>	7.8
H_2O	-233.0	-241.8^{a}	-8.8
CH ₃ NO ₂	-80.3	-81.0 ^a	-0.7
CH ₃ CH ₂ OH	-228.4	-234.0 ^a	-5.6
CH ₃ COOH	-430.0	-433.0 ^a	-3.0
HCl	-91.5	-92.3 ^a	-0.8
CH ₃ Cl	-83.8	-81.9 ^a	1.9
NOCl	40.2	51.7 ^a	11.5
RDX	208.0	192.0 ^a	-16.0
TNT	23.5	24.1^{a}	0.6
Nitroglycerin	-276.7	-279.1 ^a	-2.4
1H-Tetrazole	320.3	320.0^{a}	-0.3

^{*a*}The values are taken from the NIST Chemistry WebBook (<u>https://webbook.nist.gov/chemistry/</u>) ^{*b*}The value is taken from L. V. Gurvich et al. *Thermodynamic Properties of Individual Substances*, 4th ed., Hemisphere Publishing Corp., 1989, Vol. 1 and 2.

Table S5. Comparison of the prediction of the solid state enthalpies of formation for the benchmark set crystals

Crystal	$\Delta H_{ m gas}$, kJ mol ⁻¹	$\Delta H_{\rm sub}$, kJ mol ⁻¹	$\Delta H_{ m solid}$, kJ mol ⁻¹ (calculated)	$\Delta H_{ m solid}$, kJ mol ⁻¹ (experimental)	Δ , kJ mol ⁻¹
NH ₄ Cl	-165.7	142.8	-308.5	-314.6	-6.1
NH ₄ NO ₃	-229.7	169.3	-399.0	-365.1	33.9
TKX-50	479.8	363.9	115.9	114.0	1.9

Table S6. The relative energies (kJ mol⁻¹) of salts 1-10 in several space groups predicted by Polymorph

Salt	C2/c	<i>P</i> -1	$P2_{1}/c$	$P2_1$	$P2_{1}2_{1}2_{1}$	Pbca	$Pna2_1$
1	11.1	14.3	7.1	13.5	5.6	0.0	6.8
2	4.2	6.0	1.3	0.9	2.7	4.5	0.0
3	9.1	3.2	1.2	2.6	3.3	0.4	0.0
4	12.0	12.3	0.8	0.0	1.6	0.2	0.1
5	18.9	15.8	10.2	8.4	1.0	2.9	0.0
6	44.8	24.8	38.3	17.5	0.0	8.8	11.4
7	17.0	17.5	2.3	4.1	0.0	6.7	4.8
8	25.2	19.7	10.0	10.4	2.6	0.0	2.6
9	11.9	7.8	0.0	7.4	6.7	6.9	6.1
10	20.4	14.2	11.8	5.3	1.4	8.0	0.0

Figure S7. The calculated IR spectra of salts 1-10.

Figure S8. Finite size models used for the gas phase enthalpy of formation and lattice energy calculations.

Figure S9. Temperature dependence of the main thermodynamic functions of salts 1-10.

Coefficients of the NASA polynomials for hexazinane and its salts in the formatted form for the CEA2 program

H6N6	Ser	gey V. B	ondarch	uk, Dec/1	19, Mol. S	yst. Des. En	ıg.
1 Dec/19 H	6.00N	6.00	0.00	0.00	0.00 1	90.0878400	439700.000
200.000	1000.000	7 -2.0	-1.0 0	.0 1.0	2.0 3.0	4.0 0.0	12196.042
-3.5524392601	D+05 6.15	5136460D	+03-4.3	560000701	0+01 1.817	575380D-01-2	.259181146D-04
1.455140326	D-07-3.772	2561810D	-11 0.0	00000000	0+00 2.325	185666D+04 2	.297899787D+02

 Salt1
 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.

 1 Dec/19 C
 1.00H
 7.00N
 11.000
 2.00
 0.00 1
 205.1387800
 750300.000

 200.000
 1000.000 7
 -2.0
 -1.0
 0.0
 1.0
 2.0
 3.0
 4.0
 0.0
 6637.941

 1.272835103D+07-1.198458147D+05
 2.566974936D+02
 4.605933430D-01-1.998386217D-03
 2.333236107D-06-8.997446070D-10
 0.0000000D+00
 7.322272550D+05-1.849192256D+03

Salt2 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng. 1 Dec/19 H 7.00N 9.00 0.00 0.00 0.00 1 133.1158800 701100.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 24265.161 -3.478719230D+05 5.254732410D+03-3.190361690D+01 1.750455437D-01-2.043713653D-04 1.241267951D-07-3.036493107D-11 0.00000000D+00 5.652283600D+04 1.711431500D+02

 Salt3
 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.

 1 Dec/19 H
 7.00N
 7.00O
 3.00
 0.00
 1 153.1006800
 221300.000

 200.000
 1000.000 7 -2.0 -1.0
 0.0
 1.0
 2.0
 3.0
 4.0
 0.0
 5247.734

 9.643813680D+06-9.129089510D+04
 1.967377107D+02
 3.513887180D-01-1.528484431D-03
 1.787600568D-06-6.899554940D-10
 0.0000000D+00
 5.151220290D+05-1.415567202D+03

 Salt4
 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.

 1 Dec/19 H
 8.00N
 8.00O
 4.00
 0.00
 1 184.1147200
 263100.000

 200.000
 1000.000 7 -2.0 -1.0
 0.0
 1.0
 2.0
 3.0
 4.0
 0.0
 7468.396

 1.295779434D+07-1.287451828D+05
 3.262359320D+02
 2.595143934D-01-1.733127253D-03
 2.158744470D-06-8.534975530D-10
 0.0000000D+00
 7.112893590D+05-2.223332121D+03

Salt5Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.1 Dec/19 H7.00N9.0004.000.001 197.1134800481000.000200.0001000.000 7 -2.0 -1.00.01.02.03.04.00.031258.3391.543992483D+05-1.223050608D+03-1.226854843D+001.269707098D-01-1.295600055D-046.508213320D-08-1.226394799D-110.00000000D+006.108114550D+04-6.319962360D+00

Salt6 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng. 1 Dec/19 C 2.00H 14.00N 20.000 2.00 0.00 1 350.2653600 1419300.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 10497.699 2.229405358D+07-2.072253383D+05 4.258471760D+02 8.672448860D-01-3.565888370D-03 4.122229580D-06-1.583256357D-09 0.00000000D+00 1.284755542D+06-3.112030222D+03

Salt7 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng. 1 Dec/19 C 1.00H 7.00N 11.000 3.00 0.00 1 221.1381800 683900.000 200.000 1000.000 7 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 7227.936 1.405172449D+07-1.315530799D+05 2.757588401D+02 5.375173600D-01-2.260542907D-03 2.617564506D-06-1.004842452D-09 0.00000000D+00 7.880848060D+05-2.001675062D+03

 Salt8
 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.

 2 Dec/19 H
 7.00N
 7.00O
 2.00
 0.00
 137.1012800
 355800.000

 200.000
 1000.000 7 -2.0 -1.0
 0.0
 1.0
 2.0
 3.0
 4.0
 0.0
 24451.084

 -4.470808490D+05
 6.889352600D+03-4.067491480D+01
 1.944414684D-01-2.264705444D-04
 1.371925074D-07-3.356825950D-11
 0.0000000D+00
 7.270884570D+03
 2.212444294D+02

Salt9Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.1 Dec/19 H7.00N11.000.000.001 61.1292800773500.000200.0001000.000 7 -2.0-1.00.01.02.03.04.00.05401.6781.001997316D+07-9.719097040D+042.354615622D+022.215677250D-01-1.304179189D-031.607478988D-06-6.352160790D-100.00000000D+006.089869480D+05-1.623093802D+03

 Salt10
 Sergey V. Bondarchuk, Dec/19, Mol. Syst. Des. Eng.

 1 Dec/19 C
 1.00H
 7.00N
 9.000
 6.00
 0.001
 241.1229800
 398500.000

 200.000
 1000.000
 7
 -2.0
 -1.0
 0.0
 1.0
 2.0
 3.0
 4.0
 0.0
 8251.008

 1.583795415D+07-1.484310569D+05
 3.096260899D+02
 6.261106040D-01-2.610747721D-03
 3.010672740D-06-1.152227270D-09
 0.0000000D+00
 8.442657740D+05-2.253888564D+03

Table S7. Decomposition schemes corresponding to the maximum propulsive performance

Crystal	O/F	Decomposition equation
H ₆ N ₆	0 0.2667	$ H_6N_6 = 3 N_2 + 3 H_2 \\ 8 H_6N_6 + 6 O_2 = 48 N_2 + 12 H_2O + 12 H_2 $
Salt1	0 0.0975	$2 CH_7N_{11}O_2 = CO + CO_2 + H_2O + 6 H_2 + 11 N_2$ 8 CH ₇ N ₁₁ O ₂ + 5 O ₂ = 4 CO + 4 CO ₂ + 14 H ₂ O + 14 H ₂ + 44 N ₂
Salt2	0 0.2103	$2 H_7 N_9 = 9 N_2 + 7 H_2$ 8 H ₇ N ₉ + 7 O ₂ = 36 N ₂ + 14 H ₂ O + 14 H ₂
Salt3	0	$2 H_7 N_7 O_3 = 7 N_2 + 6 H_2 O + H_2$
Salt4	0	$H_8N_8O_4 = 4 N_2 + 4 H_2O$
Salt5	0	$4 H_7 N_9 O_4 = 18 N_2 + 14 H_2 O + O_2$
Salt6	0 0.2284	$5C_2H_{14}N_{20}O_2 = 50 N_2 + 33 H_2 + 2 H_2O + 4 CO + 4 C + 2 CO_2$ 2 $C_2H_{14}N_{20}O_2 + 5 O_2 = 2 CO + 2 CO_2 + 8 H_2O + 6 H_2 + 20 N_2$
Salt7	0 0.0724	$2 CH_7N_{11}O_3 = CO + CO_2 + 3 H_2O + 4 H_2 + 11 N_2$ 2 CH ₇ N ₁₁ O ₂ + O ₂ = CO + CO ₂ + 5 H ₂ O + 2 H ₂ + 11 N ₂
Salt8	0 0.0525	$2 H_7 N_7 O_2 = 7 N_2 + 4 H_2 O + 3 H_2$ 40 H_7 N_7 O_2 + 9 O_2 = 140 N_2 + 98 H_2 O + 42 H_2
Salt9	0 0.1986	$2 H_7 N_{11} = 11 N_2 + 7 H_2$ 2 H ₇ N ₁₁ + 2 O ₂ = 11 N ₂ + 4 H ₂ O + 3 H ₂
Salt10	0	$4 \text{ CH}_7 \text{N}_9 \text{O}_6 = 4 \text{ CO}_2 + 14 \text{ H}_2 \text{O} + 18 \text{ N}_2 + \text{O}_2$

Table S8. Mole fractions of species formed upon decomposition of the studied salts at various Ae/At ratios of FAC

O/F	Species	Injector	Combustion chamber end Ae/At = 1.58	Throat $Ae/At = 1$	Exit $Ae/At = 10$	Exit $Ae/At = 25$	Exit $Ae/At = 50$	Exit $Ae/At = 68.9$
				H_6N	6			
0	H•	0.01338	0.01177	0.00482				
	H_2	0.48996	0.49117	0.49638	0.49999	0.49992	0.49887	0.49591
	N_2	0.49665	0.49706	0.49879	0.50000	0.50000	0.50000	0.50000
0.2667	Н•	0.07919	0.07752	0.06518	0.00037			
	H_2	0.22019	0.22032	0.22316	0.24949	0.24971	0.24972	0.24972
	H ₂ O	0.19658	0.19867	0.21023	0.25022	0.25028	0.25028	0.25028
	N_2	0.46753	0.46854	0.47469	0.49990	0.50000	0.50000	0.50000
	OH•	0.02588	0.02491	0.01981	0.00002			
				Salt	1			
0	CO	0.00178	0.00185	0.00246	0.08306	0.06850	0.05042	0.04100
0		0.09178	0.09183	0.09240	0.08390	0.00839	0.03042	0.04109
		0.00403	0.00475	0.00310	0.01004	0.03141	0.04938	0.03882
	П• Ц	0.00021	0.03781	0.04232	0 26602	0 20141	0 20056	0 20855
		0.22195	0.22312	0.23120	0.20003	0.26141	0.29930	0.30833
	п ₂ О м	0.08100	0.08230	0.080/1	0.08390	0.00839	0.03043	0.04131
	IN ₂	0.32982	0.33078	0.33033	0.33000	0.33000	0.33001	0.33012
0.0975	CO	0.08136	0.08126	0.08105	0.07340	0.06241	0.04944	0.04211
	CO_2	0.01178	0.01207	0.01345	0.02655	0.03759	0.05056	0.05789
	H•	0.07311	0.07170	0.06119	0.00083	0.00001		
	H_2	0.13076	0.13056	0.13069	0.15111	0.16258	0.17555	0.18288
	H_2O	0.14336	0.14536	0.15700	0.19828	0.18742	0.17445	0.16712
	N_2	0.50931	0.51048	0.51759	0.54975	0.55000	0.55000	0.55000
	OH•	0.03065	0.02975	0.02494	0.00007			

O/F	Species	Injector	Combustion chamber end	Throat	Exit	Exit	Exit	Exit
U/I	species	injector	Ae/At = 1.58	Ae/At = 1	Ae/At = 10	Ae/At = 25	Ae/At = 50	Ae/At = 68.9
				Salt	2			
0	H•	0.03490	0.03225	0.01835				
	H_2	0.41241	0.41432	0.42431	0.43750	0.43749	0.43743	0.43726
	N ₂	0.55268	0.55343	0.55734	0.56250	0.56250	0.56250	0.56251
0.2103	H•	0.08840	0.08669	0.07410	0.00092	0.00001		
	H_2	0.19002	0.19006	0.19227	0.21825	0.21878	0.21879	0.21879
	H_2O	0.15840	0.16049	0.17218	0.21854	0.21871	0.21871	0.21871
	N_2	0.52063	0.52182	0.52904	0.56222	0.56250	0.56250	0.56250
	OII	0.02820	0.02729	0.02250	0.00000			
				Salt	3			
0	H•	0.03625	0.03543	0.02923	0.00029			
	H_2	0.10293	0.10187	0.09605	0.07133	0.07143	0.07143	0.07143
	H_2O	0.33036	0.33322	0.35043	0.42838	0.42857	0.42857	0.42857
		0.46722	0.46822	0.47414	0.49990	0.50000	0.50000	0.50000
	OII	0.05805	0.05748	0.05155	0.00010			
				Salt	4			
0	Н•	0.03365	0.03289	0.02718	0.00086	0.00003		
	H ₂	0.07646	0.07532	0.06840	0.01060	0.00168	0.00018	0.00005
	H_2O	0.34019	0.34313	0.36123	0.48351	0.49762	0.49975	0.49993
	NU• N.	0.01067	0.01024	0.00864	0.00069	0.00009	0.00001	0 40000
	\mathbf{O}	0.01262	0.01227	0.00987	0.00021	0.00001	0.49995	0.49999
	OH•	0.05061	0.04940	0.04323	0.00389	0.00040	0.00003	0.00001
	O_2	0.02233	0.02226	0.02092	0.00409	0.00070	0.00008	0.00002
				Salt	5			
0	Н•	0.04126	0.04041	0.03386	0.00137	0.00004		
	H_2	0.06510	0.06411	0.05808	0.00702	0.00057	0.00002	
	H_2O	0.26939	0.27215	0.28914	0.40863	0.42245	0.42408	0.42420
	NO•	0.01576	0.01519	0.01328	0.00256	0.00082	0.00022	0.00010
	N ₂	0.48849	0.48969	0.49671	0.54008	0.54461	0.54531	0.54539
	0•	0.02205	0.02155	0.01816	0.00119	0.00009	0.00021	0.0000
	OH•	0.06186	0.06064	0.05468	0.00946	0.001/3	0.00021	0.00006
	02	0.03000	0.03023	0.03007	0.02909	0.02909	0.03013	0.03024
				Salt	6			
0	CO	0.10350	0.10364	0.10434	0.10440	0.07944	0.05004	0.03745
	CO_2	0.00001	0.00001	0.00001	0.00024	0.00953	0.02090	0.02550
	H•	0.03021	0.02775	0.01515	0 2 (7 (0	0.26004	0.252(1	0.24076
	H ₂ НО	0.34/55	0.34925	0.35/91	0.36/68	0.36004	0.35261	0.34876
	M_2	0.51837	0.51902	0.52233	0.52657	0.52747	0.52803	0.52834
	$C_{(gr)}$	0.01007	0.01902	0.52255	0.00043	0.01542	0.03303	0.04080
0 2284	<u> </u>	0.08303	0.08289	0.08248	0 07466	0.06520	0.05376	0.04719
0.2204	CO	0.01382	0.01415	0.01582	0 03044	0.000020	0.05150	0.05807
	H•	0.07634	0.07507	0.06527	0.00267	0.00009	0.00100	0.00007
	H_2	0.12437	0.12402	0.12309	0.13445	0.14526	0.15675	0.16332
	H_2O	0.15761	0.15975	0.17245	0.23184	0.22310	0.21167	0.20510
	N_2	0.48052	0.48168	0.48868	0.52548	0.52629	0.52632	0.52632
	0•	0.01287	0.01241	0.00952	0.00001			
	OH•	0.03761	0.03667	0.03176	0.00043			

O/E	Sussian	Tuisatan	Combustion	Throat	Exit	Exit	Exit	Exit
U/F	Species	Injector	Ae/At = 1.58	Ae/At = 1	Ae/At = 10	Ae/At = 25	Ae/At = 50	Ae/At = 68.9
Salt7								
0	CO	0.08377	0.08370	0.08368	0.07387	0.06000	0.04424	0.03580
	CO_2	0.01092	0.01116	0.01228	0.02612	0.04000	0.05576	0.06420
	H•	0.06407	0.06253	0.05138	0.00012			
	H ₂	0.14617	0.14621	0.14792	0.17606	0.19000	0.20576	0.21420
	H ₂ O	0.14183	0.14362	0.15372	0.17386	0.16000	0.14424	0.13580
	N_2	0.51875	0.51986	0.52648	0.54996	0.55000	0.55000	0.55000
	OH•	0.02272	0.02183	0.01709				
0.0724	CO	0.07449	0.07424	0.07317	0.05997	0.05134	0.04145	0.03596
	CO_2	0.01733	0.01776	0.02001	0.03983	0.04865	0.05855	0.06404
	H•	0.06225	0.06118	0.05290	0.00291	0.00012	0 100 40	0.11207
	H_2	0.09/63	0.09/08	0.09444	0.088//	0.09852	0.10848	0.11397
	H ₂ U	0.1/1/5	0.1/390	0.18/34	0.23800	0.25139	0.24151	0.23003
	N_2	0.50058	0.50159	0.50884	0.54889	0.34996	0.55000	0.55000
	04 .	0.01487	0.01439	0.01134	0.00002	0.00001		
	0	0.04173	0.04073	0.03370	0.00087	0.00001		
	O_2	0.01029	0.01017	0.00694	0.0002			
-				San	0			
0	H•	0.05174	0.05030	0.03998	0.00003	0.01.400	0.01.400	0.01.400
	H_2	0.19887	0.19883	0.20030	0.21427	0.21429	0.21429	0.21429
	П ₂ О N.	0.24342	0.24330	0.23083	0.28371	0.28371	0.28371	0.28371
	OH•	0.02116	0.02017	0.01485	0.47777	0.50000	0.50000	0.50000
0.0525		0.05554	0.05442	0.04596	0.00020			
0.0323	П• На	0.05354	0.03443	0.04380	0.14982	0.15001	0 15002	0.15002
	H ₂ O	0.27188	0 27449	0.28972	0.34985	0 34998	0.34998	0.34998
	N ₂	0.46733	0.46834	0.47444	0.49989	0.50000	0.50000	0.50000
	OH•	0.03462	0.03351	0.02755	0.00005			
Salt9								
0	H•	0.03028	0.02781	0.01515				
Ū	H ₂	0.36786	0.36957	0.37836	0.38889	0.38888	0.38881	0.38860
	N_2	0.60186	0.60261	0.60648	0.61111	0.61111	0.61112	0.61114
0.1986	H•	0.07706	0.07551	0.06419	0.00070	0.00001		
	H_2	0.15266	0.15241	0.15256	0.16627	0.16665	0.16666	0.16666
	H_2O	0.15619	0.15839	0.17089	0.22209	0.22223	0.22223	0.22223
	N_2	0.56660	0.56789	0.57571	0.61088	0.61111	0.61111	0.61111
	OH•	0.02997	0.02906	0.02422	0.00006			
Salt10								
0	CO	0.05753	0.05691	0.05339	0.01456	0.00382	0.00047	0.00011
	CO_2	0.03908	0.03987	0.04456	0.09139	0.10368	0.10754	0.10796
	H•	0.03426	0.03366	0.02867	0.00318	0.00054	0.00004	0.00001
	H ₂	0.04815	0.04752	0.04344	0.01112	0.00333	0.00052	0.00015
	H ₂ O	0.24192	0.24407	0.25761	0.35112	0.36998	0.37674	0.37778
	NO•	0.01696	0.01635	0.01432	0.00330	0.00151	0.00063	0.00037
	IN ₂	0.42625	0.42/35	0.43361	0.4/512	0.48300	0.485/2	0.48615
	О Ч	0.02470	0.02424	0.02003	0.00231	0.00038	0.00008	0.00002
	O_2	0.04921	0.04935	0.04885	0.03371	0.02820	0.02678	0.02679
	<i>∽</i> ∠							