Supplementary Information: Controlling Polymer

Architecture to Design Dynamic Network Materials

with Multiple Dynamic Linkers

Jafer R. Vakil,^a Nethmi De Alwis Watuthanthrige,^a Zachary A. Digby,^a Borui Zhang,^a Hannah A.

Lacy,^a Jessica L. Sparks,^b Dominik Konkolewicz^{a,*}

a Department of Chemistry and Biochemistry, Miami University, 651 E High St. Oxford, OH, 45056, USA

b Department of Chemical Paper and Biomedical Engineering, Miami University, 650 E High St. Oxford, OH, 45056, USA

* corresponding author: d.konkolewicz@miamiOH.edu

Determination of number average molecular weight (M_n) and composition by NMR

For typical PEA-UPyMA-FMA RAFT materials, peak at 3.36 ppm (PADTC-CH₂ at trithiocarbonate) was calibrated to 2H. Peaks centered at 5.0 ppm (FMA-furfuryl) was integrated and divided by 2 (2H from FMA) delivering the FMA units. The peaks near 3.20 ppm (UPyMA) were integrated and divided by 4 (2H from UPyMA urethane protons $CH_2NHCOOCH_2$ and 2H from UPyMA urea protons $CH_2NHCONH$) delivering the UPyMA units. The peak at 4.10 ppm was integrated, and the resulting integral at 4.1 ppm had the integral values of the peaks near 3.2 ppm subtracted (4H from UPyMA from CH₂ at UPyMA ester and CH₂ at UPyMA NHCOO<u>CH₂</u> urethane), and the remaining signal, divided by 2 (2H from EA CH₂ ester protons) delivering the EA units.

For the PEA-UPyMA-FMA FRP material, peak at 2.7 ppm (thioether R-S-<u>CH₂</u> from first added monomer) was calibrated to 2H. Peaks centered at 5.0 ppm (FMA-furfuryl) was integrated and divided by 2 (2H from FMA) delivering the FMA units. The peaks near 3.20 ppm (UPyMA) were integrated and divided by 4 (2H from UPyMA urethane protons <u>CH₂NHCOOCH₂</u> and 2H from UPyMA urea protons <u>CH₂NHCONH</u>) delivering the UPyMA units. The peak at 4.10 ppm was integrated, and the resulting integral at 4.1 ppm had the integral values of the peaks near 3.2 ppm subtracted (4H from UPyMA from CH₂ at UPyMA ester and CH₂ at UPyMA NHCOO<u>CH₂</u> urethane), and the remaining signal, divided by 2 (2H from EA CH₂ ester protons) delivering the EA units.

 M_n by NMR is typically calculated via multiplying monomer units by their respective molecular weights, a sum of the resulting values and the molecular weight of the chain transfer agent (PADTC or DDT) gives the experimental M_n value.

Supplemental Data:

Figure S1: NMR spectrum of PADTC.

Figure S2: NMR spectrum of UPyMA.

Figure S3: NMR Spectrum of FMA.

Figure S4: NMR Spectrum of PEA₁₀₀-UPyMA_{2.5}-FMA_{2.5} made by RAFT

Figure S5: NMR Spectrum of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} made by RAFT

Figure S6: NMR Spectrum of PEA₁₀₀-UPyMA₅-FMA₅ made by RAFT

Figure S7: NMR Spectrum of PEA₅₀-UPyMA_{1.9}-FMA_{1.9} made by RAFT

Figure S8: NMR Spectrum of PEA₁₅₀-UPyMA_{5.6}-FMA_{5.6} made by RAFT

Figure S9: NMR Spectrum of PEA₁₀₀-UPyMA₀-FMA₁₀ made by RAFT

Figure S10: NMR Spectrum of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} made by FRP

Figure S11: SEC traces of all polymers synthesized.

Figure S12: Typical DSC traces of each material studied.

Figure S13: Infrared (IR) spectrum for PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} material.

Figure S14: Rheological strain sweep of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} using a 1 Hz frequency at 25 °C.

Figure S15: Rheological frequency sweep of PEA₁₀₀-UPyMA_{2.5}-FMA_{2.5} using 0.1% strain at 25 °C.

Figure S16: Rheological frequency sweep of PEA_{100} -UPyMA₅-FMA₅ using 0.1% strain at 25 °C.

Figure S17: Rheological frequency sweep of PEA₅₀-UPyMA_{1.9}-FMA_{1.9} using 0.1% strain at 25 °C.

Figure S18: Rheological frequency sweep of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} using 0.1% strain at 25 °C.

Figure S19: Rheological frequency sweep of PEA₁₅₀-UPyMA_{5.6}-FMA_{5.6} using 0.1% strain at 25 °C.

Figure S20: Uncut Variability of PEA₁₀₀-UPyMA_{2.5}-FMA_{2.5}.

Figure S21: Uncut Variability of PEA₁₀₀-UPyMA₅-FMA₅.

Figure S22: Uncut Variability of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75}.

Figure S23: Uncut Variability of PEA₁₅₀-UPyMA_{5.6}-FMA_{5.6}.

Figure S24: Uncut Variability of PEA₁₀₀-UPyMA₀-FMA₁₀ materials.

Figure S25: Uncut Variability of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75}-FRP materials.

Figure S26: Fitted Young's modulus curves for typical each of the materials.

Figure S27: Self-healing properties of PEA₁₀₀-UPyMA_{3.75}-FMA_{3.75} materials at 80 °C.

Figure S28: Self-healing properties of PEA₁₅₀-UPyMA_{5.6}-FMA_{5.6} materials at 80 °C.

Figure S29: Self-healing properties of PEA₁₀₀-UPyMA_{2.5}-FMA_{2.5} materials at 80 °C.

Table S1: Self-healing recovery	of materials.	a 24 h, b	16 h
---------------------------------	---------------	-----------	------

Material	%Recovery Stress	%Recovery Strain
PEA ₁₀₀ -UPyMA _{2.5} -FMA _{2.5} ^a	49	105
PEA ₁₀₀ -UPyMA _{3.75} -FMA _{3.75} ^a	100	95
PEA ₁₀₀ -UPyMA ₅ -FMA ₅ ^a	109	118
PEA ₁₅₀ -UPyMA _{5.6} -FMA _{5.6} ^b	93	84