Supporting Information

Hybrid Nanoparticles Based Fluorescence Switch for Recognition of Ketoprofen in Aqueous medium

Anu Saini^{a,}, Manpreet Kaur^b, Mayank^c, Anil Kuwar^{d*}, Navneet Kaur^{a,b*}, Narinder Singh^{c*}

^aCentre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh, India, 160014.; E-mail: <u>navneetkaur@pu.ac.in</u>

^bDepartment of Chemistry, Panjab University, Chandigarh, India, 160014, E-mail: <u>navneetkaur@pu.ac.in</u>

^cDepartment of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, 140001, India. E-mail: nsingh@iitrpr.ac.in; Tel: +91-1881242176

^dSchool of Chemical Sciences, North Maharashtra University, Jalgaon 425001, Maharashtra, India *E-mail: kuwaras@gmail.com, Tel:* +91-2572257431

Table of Contents

Figure S1: Chemical structures of different drug molecules

Figure S2: ¹H NMR Spectrum of Ligand 2

Figure S3: Mass Spectrum of Ligand 2

Figure S4: (A) UV-Vis absorption spectra for comparison of Ligand 1 and organic nanoparticles (**OL1**); (B) Fluorescence spectra for comparison of Ligand 1 and organic nanoparticles (**OL2**); (C) UV-Vis absorption spectra for comparison of Ligand 2 and organic nanoparticles (**OL2**); (D) Fluorescence spectra for comparison of Ligand 2 and organic nanoparticles (**OL2**); (E) UV-Vis absorption spectra for comparison of Ligand 3 and organic nanoparticles (**OL3**); (F) Fluorescence spectra for comparison of Ligand 3 and organic nanoparticles (**OL3**); (F) Fluorescence spectra for comparison of Ligand 3 and organic nanoparticles (**OL3**);

Figure S5: TEM images of organic nanoparticles **OL1-OL3** showing average particle size to be around 13 nm, 16 nm and 18 nm respectively.

Figure S6: UV-Visible absorption spectra of (A) AgNPs@OL1, (B) AgNPs@OL2, and (C) AgNPs@OL3.

Figure S7: TEM image of silver hybrid nanoparticles SH3 showing around 10-12 hybrid nanoparticles in single frame.

Figure S8: (A) Emission profile of **SH1** upon addition of 20 μ M of different drug molecules; (B) Emission profile of **SH2** upon addition of 20 μ M of different drug molecules

Figure S9: Fluorescence profile of SH3 upon addition of 20 μ M of different drug molecules in PBS buffer.

Figure S10 (A) Effect of ionic strength on **SH1** upon addition of 0-100 equiv. of TBA salt of perchlorate; (B) Effect of ionic strength on **SH2** upon addition of 0-100 equiv. of TBA salt of perchlorate; (C) Effect of ionic strength on **SH3** upon addition of 0-100 equiv. of TBA salt of perchlorate.

Figure S11: (A) Effect of addition of acid on SH3; (B) Effect of addition of base on SH3.

Figure S12: (A) Effect of addition of acid on **SH1**; (B) Effect of addition of base on **SH1**; (C) Effect of addition of acid on **SH2**; (D) Effect of addition of base on **SH2**.

Figure S13: Fluorescence emission profile of SH3 observed on Day 1, Day 7, Day 14 and Day 21

Table S1: A comparison of literature reported sensors with the present work

Figure S1: Chemical structures of different drug molecules

Figure S2: ¹H NMR Spectrum of Ligand 2

Figure S3: Mass Spectrum of Ligand 2

Figure S4: (A) UV-Vis absorption spectra for comparison of Ligand 1 and organic nanoparticles (**OL1**); (B) Fluorescence spectra for comparison of Ligand 1 and organic nanoparticles (**OL2**); (C) UV-Vis absorption spectra for comparison of Ligand 2 and organic nanoparticles (**OL2**); (D) Fluorescence spectra for comparison of Ligand 2 and organic nanoparticles (**OL2**); (E) UV-Vis absorption spectra for comparison of Ligand 3 and organic nanoparticles (**OL3**); (F) Fluorescence spectra for comparison of Ligand 3 and organic nanoparticles (**OL3**); (F) Fluorescence spectra for comparison of Ligand 3 and organic nanoparticles (**OL3**).

Figure S5: TEM images of organic nanoparticles **OL1-OL3** showing average particle size to be around (A) 13 nm, (B)16 nm and (C) 18 nm respectively.

Figure S6: UV-Visible absorption spectra of (A) AgNPs@OL1, (B) AgNPs@OL2, and (C) AgNPs@OL3.

Figure S7: TEM image of silver hybrid nanoparticles **SH3** showing around (10-12) hybrid nanoparticles in single frame

Figure S8: (A) Emission profile of **SH1** upon addition of 20 μ M of different drug molecules; (B) Emission profile of **SH2** upon addition of 20 μ M of different drug molecules

Figure S9: Fluorescence profile of SH3 upon addition of 20 μ M of different drug molecules in PBS buffer.

Figure S10: (A) Effect of ionic strength on **SH1** upon addition of 0-100 equiv. of TBA salt of perchlorate; (B) Effect of ionic strength on **SH2** upon addition of 0-100 equiv. of TBA salt of perchlorate; (C) Effect of ionic strength on **SH3** upon addition of 0-100 equiv. of TBA salt of perchlorate.

Figure S11: (A) Effect of addition of acid on SH3; (B) Effect of addition of base on SH3.

Figure S12: (A) Effect of addition of acid on **SH1;** (B) Effect of addition of base on **SH1;** (C) Effect of addition of acid on **SH2;** (D) Effect of addition of base on **SH2.**

Figure S13: Fluorescence emission profile of **SH3** observed on Day 1, Day 7, Day 14 and Day 21.

S.No	Name of Paper Title	Medium of	Detection	Detection	Mode of	References
		studies	Limit	Range	Detection	
1	Sensitive determination of	KMnO ₄	2.0×10^{-8}	5.0×10 ⁻⁸	Chemiluminescen	1
	injection with chemiluminescence detection	Na ₂ SO ₃	mon	3.0×10 ⁻⁶ mol/L		
2.	A validated method development for ketoprofen by a flow-injection analysis with UV-detection and its application to pharmaceutical formulations	Aqueous solution of ethanol (10%, v/v)	3 μg mL ⁻¹	1.6×10 ⁻⁶ - 1.7×10 ⁻⁴ M	Flow-injection analysis method with UV-detection	2
3	Determination of ketoprofen based on its quenching effect in the fluorescence of quantum dots	300 mM NaH ₂ PO ₄ / NaOH buffer	2.3 mg/mL	7.5-100 mg/mL	Fluorometric determination.	3
4.	Spectrophotometric determination of ketoprofen and its application in pharmaceutical analysis	Toluene	0.037 μg×mL ⁻¹	0.8-16.0 μg×mL ⁻¹	Spectrophotometr ic determination	4
5.	On-line solvent recycling: a tool for the development of clean analytical chemistry in flow injection Fourier transform infrared spectrometry. Determination of ketoprofen	CCl ₄	0.04 mg ml ⁻	up to 10 mg ml ⁻¹	Flow injection Fourier transform infrared spectrometry.	5
6.	Quantitative determination of ketoprofen in gels and ampules by using flow- injection UV spectrophotometry and HPLC	Phosphate buffer (pH 2.2, 0.01 M): acetonitrile , 60:40, v/v	0.44 μg/mL	7.5-75 μg/mL	FI-UV spectrophotometri c method	6

Table S1: A comparison of literature reported sensors with the present work

7.	Simultaneous determination	Mobile		15.6-250	Reverse-phase	7
	of naproxen, ketoprofen and	phase		µg/ml	high performance	
	phenol red in samples from	consists of		1.0.	liquid	
	rat intestinal permeability	mixture of			chromatographic	
	studies. HPLC method	20%			method with UV	
	development and validation	methanol			detection	
		28%				
		of				
		acetonitrile				
		52%				
		water and				
		0.4 ml				
		triethylami				
		ne				
		(adjusted				
		to nH 3.2				
		using				
		orthonhosn				
		horic acid)				
8	Simultaneous HPLC	The			High-performance	8
0.	determination of ketoprofen	optimal			liquid	_
	and its degradation products	mobile			chromatography	
	in the presence of	phase was			(HPLC) method	
	preservatives in	a			with UV	
	pharmaceuticals	mixture of			spectrophotometri	
	Francisco	acetonitrile			c detection	
		water and				
		phosphate				
		buffer pH				
		3.5				
		(40:58:2,				
		v/v/v).				
9.	Determination of flunixin	Water-	1µg kg-1		Liquid	9
	and ketoprofen in milk by	acetonitrile			chromatography-	
	liquid	(50/50			tandem mass	
	chromatography-tandem	(v/v))			spectrometry	
	mass spectrometry	containing				
		0.1%				
		formic acid				
10.	Hybrid Nanoparticles Based	Aqueous	34 nM	0-25 µM	Fluorescence	
	Fluorescence Switch for	Medium		•	Spectrophotomete	
	Recognition of Ketoprofen				r	
	in Aqueous medium					
	(Present Work)					

References

- 1. Y. Zhuang, H. Song, J Pharm Biomed Anal. 2007, 44(3), 824-8.
- 2. A.Enein HY1, D. A., Tuncel M, Farmaco. 2003, 58(6), 419-22.
- L. Molina-GarcíaaJoão, L.M.SantosbAntonio, R.Medinaa Eulogio, J.Llorent-Martínez, Journal of Food and Drug Analysis, 2013, 21(13), 426-431
- 4. Z. Kormosh, I. Hunka, Y. Basel, Acta Pol Pharm, 2009, 66(1), 3-9.
- M.J Sánchez-DasiS, Garrigues M.LCerveraMde la Guardia, Analytica Chimica Acta, 1998, 361(3), 253-260.
- Ozlü C1, Basan H, Satana E, Ertaş N, Göğer NG., J Pharm Biomed Anal. 2005, 15;39(3-4):606-11.
- 7. Zakeri-Milani P1, Barzegar-Jalali M, Tajerzadeh H, Azarmi Y, Valizadeh H, J Pharm Biomed Anal. 2005 Sep 15;39(3-4):624-30.
- Dvorák J1, Hájková R, Matysová L, Nováková L, Koupparis MA, Solich P, J Pharm Biomed Anal. 2004 Nov 15;36(3):625-9.
- 9. Els Daeseleirea, L. Mortiera, H. De Ruycka. N. Geerts, Analytica Chimica Acta, 488(1), 2003, 25-34.