Supplementary Information

New computational method for molecular design of liquid-liquid extractant and related phase equilibrium based on group contribution

Yingying Guo, Hong Zeng, Hang Song*, Shun Yao*

School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China

Corresponding author: Hang Song, e-mail: pharmposter2012@163.com, Shun Yao,

e-mail: Cusack@scu.edu.cn

Tel.: +86-028-85405221; fax:+86-028-85405221

Table of Contents

Combinational selectivity (S^C)	S3-S4
Four situations for function $f(A)$	S5-S9
Residual selectivity (S^R)	S10-S11
Table S1. $\theta\Psi$ matrix	S12

Combinational selectivity (S^C)

From Eq. (8) on the page 7 of the paper, there is:

$$\ln S^{C} = \ln\left[\left(\frac{\gamma_{1}^{C}}{\gamma_{2}^{C}}\right)^{r} / \left(\frac{\gamma_{1}^{C}}{\gamma_{2}^{C}}\right)^{e}\right]$$

$$= \ln\left(\frac{\gamma_{1}^{C}}{\gamma_{2}^{C}}\right)^{r} - \ln\left(\frac{\gamma_{1}^{C}}{\gamma_{2}^{C}}\right)^{e}$$
(S1)

The combined activity coefficient of the combinatorial part (Eq. (3)) is substituted into the above equation to obtain Eq. (S2).

$$\ln S^{c} = \ln \left(\frac{\gamma_{1}^{C}}{\gamma_{2}^{C}} \right)^{r} - \ln \left(\frac{\gamma_{1}^{C}}{\gamma_{2}^{C}} \right)^{e}$$

$$= \ln \left(\gamma_{1}^{C} \right)^{r} - \ln \left(\gamma_{2}^{C} \right)^{r} - \left(\ln \left(\gamma_{1}^{C} \right)^{e} - \ln \left(\gamma_{2}^{C} \right)^{e} \right)$$

$$= 5 \left(q_{1} - q_{2} \right) \ln \frac{\sum_{j=1}^{3} q_{j} y_{j}}{\sum_{j=1}^{3} q_{j} x_{j}} + \left(r_{1} - r_{2} \right) \left[\frac{\sum_{j=1}^{3} y_{j} l_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} - \frac{\sum_{j=1}^{3} x_{j} l_{j}}{\sum_{j=1}^{3} r_{j} x_{j}} \right] - 5 \left(q_{1} - q_{2} \right) \ln \frac{\sum_{j=1}^{3} r_{j} y_{j}}{\sum_{j=1}^{3} r_{j} x_{j}}$$

$$= 5 \left(q_{1} - q_{2} \right) \ln \left(\frac{\sum_{j=1}^{3} q_{j} y_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} \right) / \frac{\sum_{j=1}^{3} q_{j} x_{j}}{\sum_{j=1}^{3} r_{j} x_{j}} + \left(r_{1} - r_{2} \right) \left[\frac{\sum_{j=1}^{3} y_{j} l_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} - \frac{\sum_{j=1}^{3} x_{j} l_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} \right] \tag{S2}$$

If parameter B is introduced here as:

$$B = \frac{\sum_{j=1}^{3} y_{j} l_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} - \frac{\sum_{j=1}^{3} x_{j} l_{j}}{\sum_{j=1}^{3} r_{j} x_{j}}$$
(S3)

Due to
$$l_i = 5(r_i - q_i) - (r_i - 1) = 4r_i - 5q_i + 1$$
 (S4)

Now Eq. (S4) is substituted into Eq. (S3) and Eq. (S5) can be obtained as follows.

$$B = 4 - 5 \frac{\sum_{j=1}^{3} y_j q_j}{\sum_{j=1}^{3} r_j y_j} + \frac{1}{\sum_{j=1}^{3} r_j y_j} - \left[4 - 5 \frac{\sum_{j=1}^{3} x_j q_j}{\sum_{j=1}^{3} r_j x_j} + \frac{1}{\sum_{j=1}^{3} r_j x_j}\right]$$

$$= 5\left(\frac{\sum_{j=1}^{3} x_{j} q_{j}}{\sum_{j=1}^{3} r_{j} x_{j}} - \frac{\sum_{j=1}^{3} y_{j} q_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} + \frac{\sum_{j=1}^{3} r_{j} (x_{j} - y_{j})}{\sum_{j=1}^{3} r_{j} y_{j} \cdot \sum_{j=1}^{3} r_{j} x_{j}} \right)$$
(S5)

Then Eq. (S6) is obtained by substituting Eq. (S3) into Eq. (10).

$$\ln S^{C} = 5(q_{1} - q_{2})(\ln \frac{\sum_{j=1}^{3} q_{j} y_{j}}{\sum_{j=1}^{3} r_{j} y_{j}} - \ln \frac{\sum_{j=1}^{3} q_{j} x_{j}}{\sum_{j=1}^{3} r_{j} x_{j}}) + (r_{1} - r_{2})[5(\frac{\sum_{j=1}^{3} x_{j} q_{j}}{\sum_{j=1}^{3} r_{j} x_{j}} - \frac{\sum_{j=1}^{3} y_{j} q_{j}}{\sum_{j=1}^{3} r_{j} y_{j}}) + \frac{\sum_{j=1}^{3} r_{j} (x_{j} - y_{j})}{\sum_{j=1}^{3} r_{j} y_{j}}]$$

$$=5(q_1-q_2)\ln\frac{\sum_{j=1}^{3}q_jy_j}{\sum_{j=1}^{3}r_jy_j}-5(r_1-r_2)\frac{\sum_{j=1}^{3}q_jy_j}{\sum_{j=1}^{3}r_jy_j}-[5(q_1-q_2)\ln\frac{\sum_{j=1}^{3}q_jx_j}{\sum_{j=1}^{3}r_jx_j}-5(r_1-r_2)\frac{\sum_{j=1}^{3}q_jx_j}{\sum_{j=1}^{3}r_jx_j}]$$

$$+(r_1 - r_2) \frac{\sum_{j=1}^{3} r_j (x_j - y_j)}{\sum_{j=1}^{3} r_j y_j \cdot \sum_{j=1}^{3} r_j x_j}$$
(S6)

If parameters A_1 and A_2 are introduced here as:

$$\frac{\sum_{j=1}^{3} q_j y_j}{\sum_{j=1}^{3} r_j y_j} = A_1; \quad \frac{\sum_{j=1}^{3} q_j x_j}{\sum_{j=1}^{3} r_j x_j} = A_2$$
(S7)

Eq. (S7) is substituted into Eq. (S6), and then Eq. (9) on the page 7 in the paper is obtained.

Four situations for function f(A)

2.1 The first situation ($q_1 > q_2$, $r_1 > r_2$)

From Eq. (11), when f'(A) > 0, there is $A < \frac{q_1 - q_2}{r_1 - r_2} = A_0$; When f'(A) < 0, there is

$$A > \frac{q_1 - q_2}{r_1 - r_2} > A_0.$$

If A is equal to A_1 in Eq. (S7), then

$$A_1 - A_0 = \frac{q_1 y_1 + q_2 y_2 + q_3 y_3}{r_1 y_1 + r_2 y_2 + r_3 y_3} - \frac{q_1 - q_2}{r_1 - r_2}$$

$$=\frac{(y_1+y_2)(r_1q_2-r_2q_1)+y_3(q_3(r_1-r_2)-r_3(q_1-q_2))}{(r_1y_1+r_2y_2+r_3y_3)(r_1-r_2)}$$
(S8)

(I) From Eq. (S8), if $\frac{r_1}{q_1} > \frac{r_2}{q_2}$, and $0 < \frac{r_3}{q_3} < \frac{r_1 - r_2}{q_1 - q_2}$, $A_1 > A_0$, The function is a

decreasing function in this region. Then, the relationship between A_2 and A_1 is discussed.

From Eq. (S7),

$$A_{2} - A_{1} = \frac{q_{1}x_{1} + q_{2}x_{2} + q_{3}x_{3}}{r_{1}x_{1} + r_{2}x_{2} + r_{3}x_{3}} - \frac{q_{1}y_{1} + q_{2}y_{2} + q_{3}y_{3}}{r_{1}y_{1} + r_{2}y_{2} + r_{3}y_{3}}$$

$$= \frac{(x_{2}y_{1} - x_{1}y_{2})(r_{1}q_{2} - r_{2}q_{1}) + (x_{3}y_{1} - x_{1}y_{3})(r_{1}q_{3} - r_{3}q_{1}) + (x_{3}y_{2} - x_{2}y_{3})(r_{2}q_{3} - r_{3}q_{2})}{(r_{1}x_{1} + r_{2}x_{2} + r_{2}x_{2})(r_{1}y_{1} + r_{2}y_{2} + r_{3}y_{2})}$$
(S9)

When phase equilibrium is reached, $y_1 > x_1$, $y_2 < x_2$, $y_3 > x_3$.

From above equation, when $\frac{r_3}{q_3} > \frac{r_1}{q_1} > \frac{r_2}{q_2}$, $A_2 > A_1$, hence $f(A_1) - f(A_2) > 0$.

Next, the value A_1 with the same function value A_1 will be solved.

From Eq. (10),

$$f(A_1) = (q_1 - q_2) \ln A_1 - A_1(r_1 - r_2)$$
(S10)

$$f(A_1) = (q_1 - q_2) \ln A_1 - A_1(r_1 - r_2)$$
(S11)

Set $f(A_1) = f(A_1)$, then Eq. (S12) was obtained.

$$\frac{A_1 - A_1'}{\ln A_1 - \ln A_1'} = \frac{q_1 - q_2}{r_1 - r_2}$$
 (S12)

When $\frac{1}{2} \le \frac{A_1}{A_1} \le 2$, Eq. (S12) can be approximated as Eq. (S13).

$$A_{1} = 2\frac{q_{1} - q_{2}}{r_{1} - r_{2}} - A_{1}$$
 (S13)

At this point, since A_1 is on the side of the increasing function, when $A_2 < A_1$, then $f(A_1) - f(A_2) > 0$, that is $f(A_1) - f(A_2) > 0$.

So, $A_2 - A_1 < 0$.

That is,
$$\frac{q_1x_1 + q_2x_2 + q_3x_3}{r_1x_1 + r_2x_2 + r_3x_3} - \left[2\frac{q_1 - q_2}{r_1 - r_2} - \frac{q_1y_1 + q_2y_2 + q_3y_3}{r_1y_1 + r_2y_2 + r_3y_3}\right] < 0$$

$$\frac{(x_1+x_2)(r_1q_2-r_2q_1)+x_3[q_3(r_1-r_2)-r_3(q_1-q_2)]}{(r_1-r_2)(r_1x_1+r_2x_2+r_3x_3)}+\\$$

$$\frac{(y_1 + y_2)(r_1q_2 - r_2q_1) + y_3[q_3(r_1 - r_2) - r_3(q_1 - q_2)]}{(r_1 - r_2)(r_1y_1 + r_2y_2 + r_3y_3)} < 0$$
(S14)

Therefore $r_1q_2 - r_2q_1 > 0$, if Eq. (S14) is satisfied, then

$$q_3(r_1-r_2)-r_3(q_1-q_2)<0$$

That is,
$$\frac{r_3}{q_3} > \frac{r_1 - r_2}{q_1 - q_2}$$
 (S15)

Since this result is contradicted with the previous conclusion $(0 < \frac{r_3}{q_3} < \frac{r_1 - r_2}{q_1 - q_2})$, the

case of A_1 and A_2 on the same side of A_0 was considered in the following discussion.

Besides, when
$$\sum_{j=1}^{3} r_j(x_j - y_j) > 0$$
, that is $(r_1 - r_3)(x_1 - y_1) + (r_2 - r_3)(x_2 - y_2) > 0$, Due

to
$$r_1 > r_2$$
, when $r_3 > r_1$, $\frac{\sum_{j=1}^{3} r_j (x_j - y_j)}{\sum_{j=1}^{3} r_j y_j \cdot \sum_{j=1}^{3} r_j x_j} > 0$.

Hence,

$$\ln S^{C} = 5(q_1 - q_2) \ln A_1 - 5(r_1 - r_2) A_1 - [5(q_1 - q_2) \ln A_2 - 5(r_1 - r_2) A_2]$$

$$+(r_1-r_2)\frac{\sum_{j=1}^{3}r_j(x_j-y_j)}{\sum_{j=1}^{3}r_jy_j\cdot\sum_{j=1}^{3}r_jx_j}$$

$$= 5[f(A_1) - f(A_2)] + (r_1 - r_2) \frac{\sum_{j=1}^{3} r_j (x_j - y_j)}{\sum_{j=1}^{3} r_j y_j \cdot \sum_{j=1}^{3} r_j x_j} > 0$$
(S16)

That is $S^C > 1$.

(II) From Eq. (S8), if $\frac{r_1}{q_1} < \frac{r_2}{q_2}$, and $\frac{r_3}{q_3} > \frac{r_1 - r_2}{q_1 - q_2} > 0$. Then $A_1 < A_0$, f(A) is an increasing function.

When $\frac{r_3}{q_3} < \frac{r_1}{q_1} < \frac{r_2}{q_2}$, then $A_2 - A_1 < 0$, $f(A_1) - f(A_2) > 0$, meanwhile, $r_3 > r_1$ is

satisfied, the combinational selectivity is $S^{C} > 1$.

From what has been discussed above, when $q_1 > q_2$, $r_1 > r_2$,

a. If $\frac{r_3}{q_3} > \frac{r_1}{q_1} > \frac{r_2}{q_2}$ and $r_3 > r_1$ are satisfied at the same time, the combinational selectivity is $S^C > 1$.

b. If $\frac{r_3}{q_3} < \frac{r_1}{q_1} < \frac{r_2}{q_2}$ and $r_3 > r_1$ are simultaneously satisfied, the combinational selectivity is $S^C > 1$.

2.2 The second situation ($q_1 < q_2$, $r_1 < r_2$)

(I) From Eq. (S8), if $\frac{r_1}{q_1} < \frac{r_2}{q_2}$, $\frac{r_3}{q_3} > \frac{r_1 - r_2}{q_1 - q_2} > 0$, and $A_1 > A_0$. The function f(A) is a

decreasing function in the region, then the relationship between A_2 and A_1 will be

discussed.

From Eq. (S9), when
$$\frac{r_3}{q_3} < \frac{r_2}{q_2}$$
, $A_2 > A_1$, then $f(A_1) - f(A_2) > 0$.

Moreover, when
$$\sum_{j=1}^{3} r_j(x_j - y_j) > 0$$
, that is $(r_1 - r_3)(x_1 - y_1) + (r_2 - r_3)(x_2 - y_2) > 0$,

Because of
$$r_1 < r_2$$
, when $r_3 < r_1$, $\frac{\sum_{j=1}^{3} r_j (x_j - y_j)}{\sum_{j=1}^{3} r_j y_j \cdot \sum_{j=1}^{3} r_j x_j} > 0$. It equates to $\ln S^C > 0$, $S^C > 1$.

(II) From Eq. (S8), when
$$\frac{r_1}{q_1} > \frac{r_2}{q_2}$$
, and $0 < \frac{r_3}{q_3} < \frac{r_1 - r_2}{q_1 - q_2}$, $A_1 < A_0$. The function

f(A) is an increasing function in the region, then the relationship between A_2 and A_1 will be discussed.

From Eq. (S9), when
$$\frac{r_3}{q_3} > \frac{r_2}{q_2}$$
, $A_2 < A_1$, then $f(A_1) - f(A_2) > 0$.

Besides, when
$$\sum_{j=1}^{3} r_j(x_j - y_j) > 0$$
, that is $(r_1 - r_3)(x_1 - y_1) + (r_2 - r_3)(x_2 - y_2) > 0$,

Because of
$$r_1 < r_2$$
, when $r_3 < r_1$, $\frac{\sum_{j=1}^{3} r_j (x_j - y_j)}{\sum_{j=1}^{3} r_j y_j \cdot \sum_{j=1}^{3} r_j x_j} > 0$. That is $\ln S^C > 0$, and $S^C > 1$.

From what has been discussed above, when $q_1 < q_2$, and $r_1 < r_2$

a. If
$$\frac{r_3}{q_3} > \frac{r_2}{q_2} > \frac{r_1}{q_1}$$
, and $r_3 < r_1$. Then, the combinational selectivity is $S^C > 1$.

b. If
$$\frac{r_3}{q_3} < \frac{r_2}{q_2} < \frac{r_1}{q_1}$$
, and $r_3 < r_1$. The combinational selectivity is $S^C > 1$.

2.3 The third situation ($q_1 > q_2$, $r_1 < r_2$)

From Eq. (11),
$$f'(A) = \frac{q_1 - q_2}{A} - (r_1 - r_2) > 0$$
, thus the function $f(A)$ is an

increasing function. If $A_1 - A_0 < 0$, then $\frac{r_1}{q_1} > \frac{r_2}{q_2}$, and $0 < \frac{r_3}{q_3} < \frac{r_1 - r_2}{q_1 - q_2}$.

When $A_2 - A_1 < 0$, then $f(A_2) < f(A_1)$.

So, $\frac{r_1}{q_1} < \frac{r_3}{q_3}$ and $\frac{r_2}{q_2} < \frac{r_3}{q_3}$ are taken from Eq. (S9).

In addition, when $r_3 < r_1$, the last term in Eq. (9) is greater than 0.

Therefore, when $q_1 > q_2$, $r_1 < r_2$, $r_3 < r_1$, $\frac{r_3}{q_3} < \frac{r_2}{q_2} < \frac{r_1}{q_1}$, the combinational selectivity

is $S^{C} > 1$.

2.4 The fourth situation ($q_1 < q_2$, $r_1 > r_2$)

From Eq. (11), $f'(A) = \frac{q_1 - q_2}{A} - (r_1 - r_2) < 0$, so the function f(A) is a decreasing

function. If $A_1 - A_0 > 0$, then $\frac{r_1}{q_1} > \frac{r_2}{q_2}$, and $0 < \frac{r_3}{q_3} < \frac{r_1 - r_2}{q_1 - q_2}$.

When $A_2 - A_1 > 0$, $f(A_2) < f(A_1)$,

Hence, it could be obtained from Eq. (S9) that $r_1q_3 - r_3q_1 < 0$ and $r_2q_3 - r_3q_2 < 0$.

That is $\frac{r_1}{q_1} < \frac{r_3}{q_3}$ and $\frac{r_2}{q_2} < \frac{r_3}{q_3}$, or expressed as $\frac{r_3}{q_3} > \frac{r_1}{q_1} > \frac{r_2}{q_2}$.

Besides, when $r_3 > r_2$, the last term in Eq. (9) is greater than 0.

Therefore, when $q_1 < q_2$, $r_1 > r_2$, $r_3 > r_2$, $\frac{r_3}{q_3} > \frac{r_1}{q_1} > \frac{r_2}{q_2}$, the combinational selectivity is $S^c > 1$.

Residual selectivity S^R

The residual term Eq. (4) of activity coefficient is substituted into the Eq. (12) to obtain:

$$\ln S^{R} = \ln(r_{1}^{R})^{r} - \ln(r_{1}^{R})^{e} - [\ln(r_{2}^{R})^{r} - \ln(r_{2}^{R})^{e}]$$

$$= \sum_{k} v_{k}^{(1)} [\ln \Gamma_{k} - \ln \Gamma_{k}^{(1)}]^{r} - \sum_{k} v_{k}^{(1)} [\ln \Gamma_{k} - \ln \Gamma_{k}^{(1)}]^{e}$$

$$- \{ \sum_{k} v_{k}^{(2)} [\ln \Gamma_{k} - \ln \Gamma_{k}^{(2)}]^{r} - \sum_{k} v_{k}^{(2)} [\ln \Gamma_{k} - \ln \Gamma_{k}^{(2)}]^{e} \}$$
(S17)

 $[\ln \Gamma_k^{(i)}]^r$ and $[\ln \Gamma_k^{(i)}]^e$ are only related to the group in component i. For the separated component i, there is: $[\ln \Gamma_k^{(i)}]^r = [\ln \Gamma_k^{(i)}]^e$.

Hence, the Eq. (S18) can be obtained.

$$\ln S^{R} = \sum_{k=1}^{k_{1}} v_{k}^{(1)} \left[\ln \Gamma_{k}^{r} - \ln \Gamma_{k}^{e} \right] - \sum_{k=1}^{k_{1}} v_{k}^{(2)} \left[\ln \Gamma_{k}^{r} - \ln \Gamma_{k}^{e} \right]$$

$$= \sum_{k=1}^{k_{1}} (v_{k}^{1} - v_{k}^{2}) (\ln \Gamma_{k}^{r} - \ln \Gamma_{k}^{e})$$
(S18)

In Eq. (S18),

$$\ln \Gamma_{k}^{r} - \ln \Gamma_{k}^{e} = Q_{k} \left[\ln \frac{\sum_{k_{1}}^{k_{1}} \theta_{m}^{e} \psi_{mk}}{\sum_{k_{1}}^{k_{1}} \theta_{m}^{r} \psi_{mk}} + \sum_{k_{1}}^{k_{1}} \frac{\theta_{m}^{e} \psi_{km}}{\sum_{k_{1}}^{k_{1}} \theta_{n}^{e} \psi_{nm}} - \sum_{k_{1}}^{k_{1}} \frac{\theta_{m}^{r} \psi_{km}}{\sum_{k_{1}}^{k_{1}} \theta_{n}^{r} \psi_{nm}} \right]$$
(S19)

Here
$$\theta_m^r = \frac{Q_m X_m}{\sum_{k_1}^{k_1} Q_n X_n}$$
; $\theta_m^e = \frac{Q_m Y_m}{\sum_{k_1}^{k_1} Q_n Y_n}$ (S20)

$$X_{m} = \frac{\sum_{i=1}^{3} v_{m}^{(i)} x_{i}}{\sum_{i=1}^{3} \sum_{k=1}^{k_{1}} v_{k}^{(i)} x_{i}}; \quad Y_{m} = \frac{\sum_{i=1}^{3} v_{m}^{(i)} y_{i}}{\sum_{i=1}^{3} \sum_{k=1}^{k_{1}} v_{k}^{(i)} y_{i}}$$
(S21)

In the above equations, k_1 is the total number of groups contained in components 1, 2 and 3. It is assumed that the groups in component 3 (solvent, also called extractant in this case) are different from those in components 1 and 2, and even if they are the same, they are treated as different groups and the calculated results are the same.

Set
$$v_k^{(1)} - v_k^{(2)} = v_k$$
 (S22)

$$Z_{k,m}^{e} = \frac{\theta_{m}^{e} \psi_{km}}{\sum_{n}^{k_{1}} \theta_{n}^{e} \psi_{nm}}; \quad Z_{k,m}^{r} = \frac{\theta_{m}^{r} \psi_{km}}{\sum_{n}^{k_{1}} \theta_{n}^{r} \psi_{nm}}$$
(S23)

Thus, the Eq. (S18) can be reduced to the following Eq. (S24).

$$\begin{split} \ln S^{R} &= v_{1}Q_{1}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,1} - \ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,1} + \sum_{m}^{k_{1}} Z_{1,m}^{e} - \sum_{m}^{k_{1}} Z_{1,m}^{r}) \\ &+ v_{2}Q_{2}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,2} - \ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,2} + \sum_{m}^{k_{1}} Z_{2,m}^{e} - \sum_{m}^{k_{1}} Z_{2,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k} - \ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k} + \sum_{m}^{k_{1}} Z_{k,m}^{e} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k_{1}}Q_{k_{1}}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} - \ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k_{1},m}^{e} - \sum_{m}^{k_{1}} Z_{k_{1},m}^{r}) \\ &= v_{1}Q_{1}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,1} + \sum_{m}^{k_{1}} Z_{1,m}^{e}) + v_{1}Q_{1}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,1} - \sum_{m}^{k_{1}} Z_{1,m}^{r}) \\ &+ v_{2}Q_{2}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,2} + \sum_{m}^{k_{1}} Z_{2,m}^{e}) + v_{2}Q_{2}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,2} - \sum_{m}^{k_{1}} Z_{2,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k}Q_{k}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k}Q_{k}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k_{1}} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k}Q_{k}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k_{1}} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k}Q_{k}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k_{1}} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k}Q_{k}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k_{1}} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k}Q_{k}(-\ln \sum_{m}^{k_{1}} \partial_{m}^{r} \psi_{m,k_{1}} - \sum_{m}^{k_{1}} Z_{k,m}^{r}) \\ &+ \cdots \\ &+ v_{k}Q_{k}(\ln \sum_{m}^{k_{1}} \partial_{m}^{e} \psi_{m,k_{1}} + \sum_{m}^{k_{1}} Z_{k,m}^{e}) + v_{k$$

The final expression Eq. (13) of $\ln S^{R}$ can be obtained from Eq. (S24).

Table S1. $\theta \Psi$ matrix

$\left[heta _{1}\psi _{1,1} ight]$	$\theta_{\scriptscriptstyle 1} \psi_{\scriptscriptstyle 1,2}$	•••	$ heta_{ ext{l}}oldsymbol{\psi}_{ ext{l,k}}$	$ heta_{ ext{l}} oldsymbol{\psi}_{ ext{l,k+1}}$	$\theta_{l}\psi_{1,k+2}$	•••	$\theta_{l}\psi_{1,k1}$
$\theta_2 \psi_{2,1}$	$\theta_2 \psi_{2,2}$	•••	$\theta_2 \psi_{2,k}$	$\theta_2 \psi_{2,k+1}$	$\theta_2 \psi_{2,k+2}$	•••	$\theta_2 \psi_{2,k1}$
	•••	•••	•••	•••	•••	• • •	
$\theta_{k}\psi_{k,1}$	$\theta_{\mathrm{k}}\psi_{\mathrm{k,2}}$	•••	$\theta_{_{\! k}} \psi_{_{k,k}}$	$ heta_{\scriptscriptstyle{\mathbf{k}}} \psi_{\scriptscriptstyle{\mathbf{k}},\scriptscriptstyle{\mathbf{k+1}}}$	$\theta_{\scriptscriptstyle { m k}} \psi_{\scriptscriptstyle { m k,k+2}}$	•••	$\theta_{k}\psi_{k,k1}$
hinspace hin	$ heta_{ ext{k+1}} extstyle{\psi}_{ ext{k+1,2}}$	•••	$ heta_{k+1} \psi_{k+1,k}$	$ heta_{ ext{k+1}} \psi_{ ext{k+1,k+1}}$	$\theta_{k+1}\psi_{k+1,k+2}$	•••	$\theta_{k+1}\psi_{k+1,k1}$
$\theta_{k+2}\psi_{k+2,1}$	$\theta_{k+2}\psi_{k+2,2}$	•••	$\theta_{k+2}\psi_{k+2,k}$	$\theta_{k+2}\psi_{k+2,k+1}$	$\theta_{k+2}\psi_{k+2,k+2}$	•••	$\theta_{k+2}\psi_{k+2,k1}$
	•••	• • •	•••	•••	•••	• • •	
$\theta_{k1} \psi_{k1,1}$	$\theta_{k1}\psi_{k1,2}$		$\theta_{k1}\psi_{k1,k}$	$\theta_{k1}\psi_{k1,k+1}$	$\theta_{k1}\psi_{k1,k+2}$	•••	$\theta_{k1}\psi_{k1,k1}$