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Combinational selectivity (S°¢)

From Eqg. (8) on the page 7 of the paper, there is:

ns® =ini’Ly /(L]
V2 V2

=1In (@)r - |n(@)e (S1)

V2 V2
The combined activity coefficient of the combinatorial part (Eg. (3)) is substituted

into the above equation to obtain Eq. (S2).
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If parameter B is introduced here as:

3 3
Z yil, ZXJIJ
- 1o (S3)

- 3 3
eryj erxj
j=1 j=1
Dueto I =5(r —q;)—(r —1)=4r -5¢ +1 (S4)

Now Eq. (S4) is substituted into Eq. (S3) and Eqg. (S5) can be obtained as follows.

3 3
Zyjqj 1 ijqj 1

B=4-51 + ~[4-5—+ ]

3 3
ery,- ery,- erxj erxj
= =i =1 =i
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Then Eq. (S6) is obtained by substituting Eq. (S3) into Eg. (10).

)+ (S5)

3

3 3 3 3
2.9, 20X 254 24 Z:,n-(xj—yj)
=
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If parameters A; and Az are introduced here as:

3 3

Z iYi _=lqjxj

-1 .

J3 =A; J3
2N DX
= =

Eq. (S7) is substituted into Eq. (S6), and then Eg. (9) on the page 7 in the paper is

=A (S7)

obtained.
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Four situations for function f(A)

2.1 The first situation (q, >q,, I >T1,)

From Eq. (11), when f (A)>0, there is A<M:AO; When f (A) <0, there is
L-r

0.9
A>—=>A.
h-n AO

If A'is equal to Az in Eq. (S7), then

0.y, +0,Y, +0;¥; 0,0,
A=A = -
r1y1+r2y2+r3y3 h—n

_ (y1 + yz)(rqu — I‘qu) +Y; (qS(rl — rz) —h (Q1 B qz)) (58)
('lyl +hLYy,+ r3y3)(r1 - rz)

(I) From Eq. (S8), if % and o< <fi=% Asa, The function is a
4 9 G G40

decreasing function in this region. Then, the relationship between A> and A: is
discussed.

From Eq. (S7),

A-A= 0% + 0% + 03X Oy, +0,Y, +05Y5
X +0X+6X LY, +hLY, +hLY;

_ (Xz Y1 — X1y2)(r1q2 B I’qu) + (XSyl B x1y3)(r1q3 — r3ql) + (X3Y2 — X2Y3)(r2Q3 B raqz) (59)
(RX + 6%+ BX)(0Y, + LY, +1Y;)

When phase equilibrium is reached, Y, > X, Y, <X,, Y;>X;.

From above equation, when 5 Shh , A, > A, hence f(A)-f(A)>0.
0 & O

Next, the value A1 with the same function value A1 will be solved.

From Eqg. (10),
F(A)=(0-a)InA-A(-1) (S10)
f(A)=(q-0)InA-A(r-r,) (S11)

Set f(A)=f(A),then Eg. (S12) was obtained.
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- (S12)
NA-InA -,
1_A .
When > < K <2, Eq. (S12) can be approximated as Eq. (S13).
A=2B"% _p (S13)

At this point, since A: is on the side of the increasing function, when A2< A;’, then

F(A) = F(A)>0, thatis (A)-T(A)>0.
So, A,—A<O.

Thatis, 950X +0% H»G=0  GYi+%Y, +0Ys g
LX + X + 15X n-r nLy,+hLy,+n5y,

(Xl + Xz)(rlqz — rqu) + Xs[qg(rl - rz) -0 (ql - qz)] T
(= )X + 6LX, +15X;)

(Y1 + ¥2)(1G, —6,0) + Y5[9,(n — 1) — (0, —G,)] <0 (S14)
(n—n)(LY, + LY, +1Y;)

Therefore 1,q,—r,0, >0, if Eq. (S14) is satisfied, then
0y (r, —1,) — (0, —0,) <0

Thatis, = > 1_"
Q3 ql _qz

(S15)

Since this result is contradicted with the previous conclusion (0<-2 < 1=" ) the

qa q1 - qz

case of A; and A, on the same side of Ag was considered in the following discussion.
3

Besides, when ) 'r,(x;—y;) >0, that is (r,—r)(x —Y,)+(r,—1)(%—Y,) >0, Due
j=1

3

2 n(x=y;)

j=1
to >r,when ,>n, — 5 >0.

PRI S

i1 =L

Hence,
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In SC :5(q1 —qz) In A1 _5(r1 - rz)A& _[S(ql _qz) In Az —5([‘1 - rz)Az]

3

Zl“ rj (Xj - yJ)
+(r1_r2) 3J_ 3
PAATEDIN A
) =t

3

er(xj—yj)
=5[f(A) - fF(AN+ (5 -) 5————>0 (S16)

PANTDONAS

j=1 =1
Thatis S© >1.

A A ¢ r, -t .
() From Eq. (S8), if L<-2,and 2>-1—-2>0. Then A <A, f(A) is an
0. Q, 0; G,—0Q

increasing function.

I. I, I.
When 2<31<-2

, then A,—A <0, f(A)-f(A)>0, meanwhile, r,>1, is
G & G
satisfied, the combinational selectivity is S¢ >1.

From what has been discussed above, when @, >q,, >,

a If 5o b ang r,>1r are satisfied at the same time, the combinational
0 &4 9

selectivity is S© >1.

P A
B o B
G & 0

b. If and r,>r1 are simultaneously satisfied, the combinational

selectivity is S© >1.

2.2 The second situation (0, <0,, L <L)

(I) From Eq. (38), if L<f2 55570 ¢ and A > A . The function f(A) is a
q1 q2 Q3 q1 _qz

decreasing function in the region, then the relationship between A, and A; will be
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discussed.

From Eq. (S9), when £<r—2, A, > A then f(A)-Tf(A)>0.

3 2

3
Moreover, when er(xj—yj)>0, that is (rL—-r)(x-vy)+(-n)X-Yy,)>0,

j=1
(X. —V.
Because of 1, <r,,when r,<r, = .o ltequates to In S¢>0, s°>1.

(T1) From Eq. (S8), when 25" and o<fo o 170

, A <A,. The function
0, q, Qs 0, -4,

f (A) is an increasing function in the region, then the relationship between A, and A;

will be discussed.

Loh A <A then f(A)-f(A)>0.

3 2

From Eqg. (S9), when

3
Besides, when >'r(x,-y,)>0, that is (f—r)(%—Y)+( 1) (X —Y,)>0,
j=1

3

> -y;)
Because of I, <r,,when r,<r, 3J=1J 13 : >0- Thatis Ins®>0,and S°>1.

0¥ 2%,
j=1 j=1

From what has been discussed above, when @, <q,,and I, <r,

alf sl i, and r, <r,. Then, the combinational selectivity is S¢ >1.

0 9 G
bof 32 b ,and I, <r,. The combinational selectivity is S¢ >1.
0: 9 G

2.3 The third situation (g, >Q,, I, <I,)

From Eqg. (11), f'(A):ql;qu—(rl—rz)>O, thus the function f(A) is an
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increasing function. If A — A, <0, then hob and o< izl
0. 0 O, 0,—0
When A, —A <0,then f(A)<f(A).
n o r, T
So, <2 and 2<% aretaken from Eq. (S9).
0. Qs 4 0

In addition, when 1, <1, the last term in Eq. (9) is greater than 0.

L, r, T o o
Therefore, when ¢, >0,, L <I,, rb<r, = <-2<-1 thecombinational selectivity

; 9, q

is S¢>1.
2.4 The fourth situation (g, <q,, I >T,)

From Eq. (11), f (A) = LA% —(r,—r,) <0, so the function f(A) is a decreasing

function. If A—A, >0, then 2> and o<zl

¢ O, 4 G -0,

When A, -A >0, f(A)<Tf(A),

Hence, it could be obtained from Eq. (S9) that r,g,—r,g, <0 and r,0,-r,0, <0.

N A ¢ r, T r, I, _r
Thatis + <=2 and -2 <2 orexpressedas =2 >-1>-2,
4 O 4 0 G & G

Besides, when 1, >r,, the last term in Eq. (9) is greater than 0.

r, r o L
3> 1>_2  the combinational

Therefore, when ¢, <q,, L>r,, L>r, =2
B & 9

selectivity is S°¢ >1.
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Residual selectivity SR

The residual term Eq. (4) of activity coefficient is substituted into the Eq. (12) to

obtain:
InS® =In(r)" ~In(r)° ~[In(r,;")" — In(r;’)°]
=> VT, =InTPT = > vP[InT, —InTPT°
” ”
D VPINT, =InTPT = > v@[InT, —InTP7°} (S17)
k k
[INT"T"and [InT{"]* are only related to the group in component i. For the separated
component i, there is: [INTV] =[InTVT.

Hence, the Eq. (S18) can be obtained.

InS® = Zv(l)[lnl“r InT¢]- Zv(z’[lnl“r InT¢]

k=1
ky
= (v —ve)(InT} —InT%}) (S18)
k7
In Eqg. (S18),

ki
Z 0:1 l//mk ky

Ky r
NIy —InT§ =Q,[In-= +Z . oo -yl (S19)

z er;l//mk Z eel//nm " Z el:l//nm

Here 6, = Q Xy ; 06:& (S20)

$Q.X, >'Qy,

Zs:v(”x. ZS:V(i)yi

G = SR = S (s21)

m 3 Kk 1 m 3 Kk
Z VIEI) i Z Vlgl)yl
i=l k=1 i=l k=1
In the above equations, ki is the total number of groups contained in components 1, 2
and 3. It is assumed that the groups in component 3 (solvent, also called extractant in
this case) are different from those in components 1 and 2, and even if they are the

same, they are treated as different groups and the calculated results are the same.
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Set v -v? =y, (S22)

_ OV - _ O (S23)

e r
Zk,m_ k ! Zk,m_

ze:l//nm Zgr:l//nm
Thus, the Eq. (S18) can be reduced to the following Eqg. (S24).

K ky ky ks
INS® =vQ N Gy, ~IND O+ D 250 =D 210)

K k k k
+V'2Q2 (In zeri!r//mz —In Zer;lﬂmz + zzg,m - Z erm)
+. .o

' K K k k
+v,Q, (In 29:1‘//m,k —In Zer;l//m,k + Z Zlf,m _szr,m)
+- .o

ks kg kg ky
Qo (IND 0¥ s =N DO Wi + 2 20— 2 Zi )
, K ky , ki ks
=v,Q (In ZH;Wm,l + Z Zle,m) +v,Q,(=In Zer;!//m,l - Z er,m)

ky kg . ks ks
QN Y O, + D Z50) Q= IN Y v, = D 75
+. ..
' kg ky . ki ky
QN YOy + D ZEn) HUQ(=IN D 0w = D Zi )
4.

K K . K K
"'V|<1Qk1 (In ZH;Wm,k1 + Z Zkel,m) +v,Q (=In zefnwm,k1 - Z Zkrl,m) (S24)

The final expression Eq. (13) of In SR can be obtained from Eq. (S24).
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Table S1. 0 ¥ matrix

oy, ,
O 54

OW 1
OV 11
OroW 21

_‘9k1\|’k1,1

oy, ,
O 5.

OW .2
OtV 1.2

OcroW 2.2

OV 1.2

91V’1,k
AT

O .«
9k+1'7yk+1, k

O oW s,k

OV 1.

Oy 1,k+1
O 311

O k1
9k+1l//k+l, k+1

O oW s 2,601

OV i1
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O, i
O 3 ks

O k2
9k+1l//k+1, k+2

O oW s,k

OV 12

O, 1
AT

OV 1
OV 1t

O oW 2.1

O 1k




