Molecular engineering of α and β peripherally trihalogenated substituted boron subphthalocyanines as mixed alloys to control physical and electrochemical properties for organic photovoltaic applications.

Esmeralda Bukuroshi^a, Siena Wong^a, Thanmayee Mudigonda^a, Kyle Nova^a, Antoine Dumont^b, Devon Holst^c, Zheng-Hong Lu^b and Timothy P Bender^{a,b,c,*}

^a Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200

College Street, Toronto, Ontario, Canada M5S 3E4.

^b Department of Materials Science and Engineering, University of Toronto, 184 College Street,

Toronto, Ontario, Canada, M5S 3E4.

^c Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario,

Canada M5S 3H6.

* - to whom correspondences should be address. Email: tim.bender@utoronto.ca

Supporting Information

S2
S3
S5
S7
S10
S11
S12
S13

Scheme S1. The synthesis of mono-chlorinated phthalonitriles from their corresponding anhydrides

Table S1. Process optimization for 3-chlorophthalimide and 3-chlorophthalic bisamide. The h	ighest
yielding conditions are shown in green.	

Target compound	Reagent (equiv.)	Reaction temperature (°C)	Reaction time (hr)	Yield (%)
3-chlorophthalimide	Ammonium acetate (15)	118	3.5	0
3-chlorophthalimide	Ammonium acetate (15)	118	24	0
3-chlorophthalimide	Urea (2)	120	2	90
3-chlorophthalic bisamide	Ammonium hydroxide (131)	55	1.5	2.5
3-chlorophthalic bisamide	Ammonium hydroxide (131)	23	1	40
3-chlorophthalic bisamide	Ammonium hydroxide (131)	23	2	57
3-chlorophthalic bisamide	Ammonium hydroxide (131)	23	4	36
3-chlorophthalic bisamide	Ammonium hydroxide (131)	23	2.5	92
3-chlorophthalic bisamide	Ammonium hydroxide (131)	23	24	46

Mass Spectroscopy

Figure S1. Mass spectrum of Cl- α F₃BsubPc (sublimed product, depicting the presence of it and F- α F₃BsubPc impurity)

Figure S2. Mass spectrum of Cl- β F₃BsubPc (sublimed product, depicting the presence of it and F- α F₃BsubPc impurity)

NMR Spectroscopy

Figure S3. COSY spectrum for $Cl-\alpha Cl_3BsubPc$.

Figure S4. COSY spectrum for Cl-βCl₃BsubPc.

Other characterization (TGA & DSC)

Figure S5. Thermal gravimetric analysis of trichlorinated and trifluorinated BsubPcs

Figure S6. Differential scanning calorimetry of trichlorinated and trifluorinated BsubPcs

Hirshfeld Surface (HS) Analysis

Figure S7. Summary of close contacts in the $Cl-\alpha F_3BsubPc$ crystal. (a)-(m) Fingerprint plots of $d_{external}$ (d_e) vs. $d_{internal}$ (d_i) showing instances of each interaction type from low occurrence (blue) to high occurrence (red). For (a) and (b), small red and orange regions of high bond occurrence are indicated using arrows. (n) Pie chart summarizing percentage contributions from each interaction type.

Figure S8. Summary of close contacts in the Cl- β F₃BsubPc crystal. (a)-(m) Fingerprint plots of d_{external} (d_e) vs. d_{internal} (d_i) showing instances of each interaction type from low occurrence (blue) to high occurrence (red). (n) Pie chart summarizing percentage contributions from each interaction type.

Figure S9. Summary of close contacts in the Cl- β Cl₃BsubPc crystal. (a)-(k) Fingerprint plots of d_{external} (d_e) vs. d_{internal} (d_i) showing instances of each interaction type from low occurrence (blue) to high occurrence (red). (l) Pie chart summarizing percentage contributions from each interaction type.

Cyclic Voltammetry

Figure S10. Cyclic voltammograms (CV) of Cl- α F₃BsubPc, Cl- β F₃BsubP, Cl- α Cl₃BsubPc and Cl- β Cl₃BsubPc (nitrogen degassed dichloromethane as the solvent, scan rate 100 mV/s, decamethylferrocene (E_{1/2,red} = -0.012 V vs Ag/AgCl) as the internal reference, 0.1M tetrabutylammonium perchlorate as the electrolyte, at room temperature. Multiple scans with various switching potentials were taken for each BsubPc in attempts to isolate each reductive or oxidative reaction and study the possibility of reversibility of each chemical reaction.

UV-Vis Spectrum of OPV Irradiation Lamp

Figure S11. UV-Vis spectrum of the excitation light (lamp: 100 W Xe arc lamp (Oriel) after passing through the filter (AM1.5G standard filter) in the Bender laboratory glovebox set up.

X-Ray Diffraction – Crystallographic Data

Table 52. Crystal data and structure ferm	incluent for CI-aCI3DSubi C.	
Identification code	Cl-aCl ₃ BsubPc	
CCDC deposition number	2051784	
Empirical formula	C24 H8.07 B Cl3.90 N6	, i
Formula weight	529.63	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/m	
Unit cell dimensions	a = 22.9423(9) Å	<i>α</i> = 90°.
	b = 15.4999(6) Å	β=114.218(1)°.
	c = 16.4607(6) Å	$\gamma = 90^{\circ}$.
Volume	5338.3(4) Å ³	
Z	8	
Density (calculated)	1.318 Mg/m ³	
Absorption coefficient	0.457 mm ⁻¹	
F(000)	2123	
Crystal size	0.140 x 0.110 x 0.110 m	1m ³
Theta range for data collection	1.356 to 27.534°.	
Index ranges	-22<=h<=29, -20<=k<=	20, -21<=l<=17
Reflections collected	46518	
Independent reflections	6375 [R(int) = 0.0494]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.7456 and 0.6806	
Refinement method	Full-matrix least-square	s on F ²
Data / restraints / parameters	6375 / 0 / 361	
Goodness-of-fit on F ²	1.066	
Final R indices [I>2sigma(I)]	R1 = 0.0609, wR2 = 0.1	665
R indices (all data)	R1 = 0.1138, $wR2 = 0.2$	063
Extinction coefficient	n/a	
Largest diff. peak and hole	0.758 and -0.383 e.Å ⁻³	

Table S2. Crystal data and structure refinement for $Cl_{\alpha}Cl_{3}BsubPc$.

	х	у	Z	U(eq)
Cl(1A)	7650(1)	5000	1996(1)	42(1)
C(3A)	7121(2)	3013(3)	-1359(2)	65(1)
C(6A)	6410(2)	2119(3)	-579(3)	64(1)
C(11A)	4990(2)	4075(3)	1364(2)	59(1)
Cl(2A)	7592(1)	3508(1)	-1776(1)	76(1)
Cl(3A)	6030(3)	1524(3)	-167(4)	97(2)
Cl(4A)	5063(1)	3003(2)	1547(1)	74(1)
C(3C)	7121(2)	3013(3)	-1359(2)	65(1)
C(6C)	6410(2)	2119(3)	-579(3)	64(1)
C(11C)	4990(2)	4075(3)	1364(2)	59(1)
N(1A)	7256(2)	5000	-602(2)	50(1)
N(2A)	6895(1)	4240(2)	357(2)	40(1)
N(3A)	6121(1)	3507(2)	713(2)	45(1)
N(4A)	6315(2)	5000	1011(2)	37(1)
C(1A)	7110(2)	4260(2)	-300(2)	45(1)
C(2A)	6987(2)	3405(2)	-688(2)	50(1)
C(4A)	6908(2)	2196(3)	-1621(3)	76(1)
C(5A)	6558(2)	1750(3)	-1247(3)	76(1)
C(7A)	6630(2)	2945(2)	-297(2)	49(1)
C(8A)	6544(2)	3527(2)	341(2)	44(1)
C(9A)	5990(1)	4262(2)	1000(2)	40(1)
C(10A)	5448(2)	4543(2)	1185(2)	44(1)
C(12A)	4549(2)	4544(3)	1555(2)	66(1)
B(1A)	6923(2)	5000	911(3)	37(1)
Cl(1B)	6626(1)	5000	3131(1)	49(1)
C(3B)	7955(3)	6998(5)	6496(3)	128(3)
C(6B)	6791(4)	7921(4)	5607(4)	116(3)
C(11B)	4276(2)	5921(4)	3671(3)	92(2)
Cl(2B)	8594(1)	6641(2)	7008(2)	105(2)
Cl(3B)	6288(2)	8470(2)	5245(3)	105(2)
Cl(4B)	4225(1)	6902(2)	3559(2)	96(1)

Table S3. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for Cl- α Cl₃BsubPc. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(3D)	7955(3)	6998(5)	6496(3)	128(3)
C(6D)	6791(4)	7921(4)	5607(4)	116(3)
C(11D)	4276(2)	5921(4)	3671(3)	92(2)
N(1B)	7670(2)	5000	5745(3)	70(1)
N(2B)	6774(1)	5760(2)	4738(2)	50(1)
N(3B)	5782(2)	6485(2)	4300(2)	60(1)
N(4B)	5822(2)	5000	4019(2)	46(1)
C(1B)	7363(2)	5736(3)	5433(2)	62(1)
C(2B)	7442(3)	6611(4)	5798(3)	84(2)
C(4B)	7877(5)	7817(6)	6733(5)	155(5)
C(5B)	7307(6)	8282(5)	6288(6)	167(5)
C(7B)	6863(3)	7060(3)	5353(3)	77(1)
C(8B)	6417(2)	6479(2)	4707(2)	58(1)
C(9B)	5490(2)	5736(3)	4010(2)	54(1)
C(10B)	4845(2)	5448(3)	3819(2)	64(1)
C(12B)	3739(2)	5458(4)	3513(3)	108(3)
B(1B)	6498(3)	5000	4172(3)	44(1)

Cl(1A)-B(1A)	1.877(5)
C(3A)-C(4A)	1.362(6)
C(3A)-C(2A)	1.401(5)
C(3A)-Cl(2A)	1.686(5)
C(6A)-C(7A)	1.385(5)
C(6A)-C(5A)	1.400(6)
C(6A)-Cl(3A)	1.599(7)
C(11A)-C(12A)	1.384(5)
C(11A)-C(10A)	1.403(5)
C(11A)-Cl(4A)	1.684(5)
C(3C)-C(4A)	1.362(6)
C(3C)-C(2A)	1.401(5)
C(3C)-H(3CA)	0.9500
C(6C)-C(7A)	1.385(5)
C(6C)-C(5A)	1.400(6)
C(6C)-H(6CA)	0.9500
C(11C)-C(12A)	1.384(5)
C(11C)-C(10A)	1.403(5)
N(1A)-C(1A)#1	1.345(4)
N(1A)-C(1A)	1.345(4)
N(2A)-C(8A)	1.361(4)
N(2A)-C(1A)	1.362(4)
N(2A)-B(1A)	1.475(4)
N(3A)-C(9A)	1.341(4)
N(3A)-C(8A)	1.343(4)
N(4A)-C(9A)	1.362(3)
N(4A)-C(9A)#1	1.362(3)
N(4A)-B(1A)	1.470(6)
C(1A)-C(2A)	1.448(5)
C(2A)-C(7A)	1.422(5)
C(4A)-C(5A)	1.381(7)
C(4A)-H(4A)	0.9500
C(5A)-H(5A)	0.9500
C(7A)-C(8A)	1.459(4)

Table S4. Bond lengths [Å] and angles $[\circ]$ for Cl- α Cl₃BsubPc.

_

C(9A)-C(10A)	1.463(4)
C(10A)-C(10A)#1	1.418(7)
C(12A)-C(12A)#1	1.412(9)
C(12A)-H(12A)	0.9500
Cl(1B)-B(1B)	1.852(5)
C(3B)-C(4B)	1.361(11)
C(3B)-C(2B)	1.398(7)
C(3B)-Cl(2B)	1.468(9)
C(6B)-Cl(3B)	1.359(9)
C(6B)-C(5B)	1.372(11)
C(6B)-C(7B)	1.428(8)
C(11B)-C(12B)	1.356(7)
C(11B)-C(10B)	1.427(6)
C(11B)-Cl(4B)	1.531(7)
C(3D)-C(4B)	1.361(11)
C(3D)-C(2B)	1.398(7)
C(3D)-H(3D)	0.9500
C(6D)-C(5B)	1.372(11)
C(6D)-C(7B)	1.428(8)
C(6D)-H(6D)	0.9500
C(11D)-C(12B)	1.356(7)
C(11D)-C(10B)	1.427(6)
N(1B)-C(1B)#1	1.327(5)
N(1B)-C(1B)	1.327(5)
N(2B)-C(1B)	1.367(5)
N(2B)-C(8B)	1.371(5)
N(2B)-B(1B)	1.474(4)
N(3B)-C(9B)	1.328(5)
N(3B)-C(8B)	1.330(5)
N(4B)-C(9B)#1	1.369(4)
N(4B)-C(9B)	1.369(4)
N(4B)-B(1B)	1.466(7)
C(1B)-C(2B)	1.464(6)
C(2B)-C(7B)	1.411(7)
C(4B)-C(5B)	1.407(13)
C(4B)-H(4B)	0.9500

0.9500
1.447(6)
1.450(5)
1.390(9)
1.421(12)
0.9500
119.1(4)
120.1(3)
120.6(4)
118.0(4)
125.4(4)
116.6(4)
117.2(4)
120.4(3)
121.3(3)
119.1(4)
120.4
120.4
118.0(4)
121.0
121.0
117.2(4)
116.9(4)
114.1(3)
122.4(3)
122.3(3)
116.6(3)
114.3(4)
122.56(18)
122.57(18)
122.6(3)
130.6(3)
105.0(3)
119.5(4)
119.5(4)

C(3C)-C(2A)-C(1A)	132.7(4)
C(3A)-C(2A)-C(1A)	132.7(4)
C(7A)-C(2A)-C(1A)	107.7(3)
C(3C)-C(4A)-C(5A)	121.5(4)
C(3A)-C(4A)-C(5A)	121.5(4)
C(3A)-C(4A)-H(4A)	119.2
C(5A)-C(4A)-H(4A)	119.2
C(4A)-C(5A)-C(6A)	121.2(4)
C(4A)-C(5A)-C(6C)	121.2(4)
C(4A)-C(5A)-H(5A)	119.4
C(6A)-C(5A)-H(5A)	119.4
C(6C)-C(7A)-C(2A)	120.7(3)
C(6A)-C(7A)-C(2A)	120.7(3)
C(6C)-C(7A)-C(8A)	132.4(4)
C(6A)-C(7A)-C(8A)	132.4(4)
C(2A)-C(7A)-C(8A)	106.8(3)
N(3A)-C(8A)-N(2A)	122.9(3)
N(3A)-C(8A)-C(7A)	130.6(3)
N(2A)-C(8A)-C(7A)	105.2(3)
N(3A)-C(9A)-N(4A)	122.5(3)
N(3A)-C(9A)-C(10A)	131.7(3)
N(4A)-C(9A)-C(10A)	104.8(3)
C(11A)-C(10A)-C(10A)#1	121.1(2)
C(11C)-C(10A)-C(9A)	131.6(3)
C(11A)-C(10A)-C(9A)	131.6(3)
C(10A)#1-C(10A)-C(9A)	107.31(18)
C(11A)-C(12A)-C(12A)#1	121.7(2)
С(11А)-С(12А)-Н(12А)	119.1
C(12A)#1-C(12A)-H(12A)	119.1
N(4A)-B(1A)-N(2A)	105.4(3)
N(4A)-B(1A)-N(2A)#1	105.4(3)
N(2A)-B(1A)-N(2A)#1	106.0(3)
N(4A)-B(1A)-Cl(1A)	114.0(3)
N(2A)-B(1A)-Cl(1A)	112.6(2)
N(2A)#1-B(1A)-Cl(1A)	112.6(2)
C(4B)-C(3B)-C(2B)	118.1(8)

C(4B)-C(3B)-Cl(2B)	113.8(6)
C(2B)-C(3B)-Cl(2B)	128.1(7)
Cl(3B)-C(6B)-C(5B)	113.3(7)
Cl(3B)-C(6B)-C(7B)	129.5(6)
C(5B)-C(6B)-C(7B)	117.1(8)
C(12B)-C(11B)-C(10B)	117.2(6)
C(12B)-C(11B)-Cl(4B)	118.9(4)
C(10B)-C(11B)-Cl(4B)	123.4(4)
C(4B)-C(3D)-C(2B)	118.1(8)
C(4B)-C(3D)-H(3D)	121.0
C(2B)-C(3D)-H(3D)	121.0
C(5B)-C(6D)-C(7B)	117.1(8)
C(5B)-C(6D)-H(6D)	121.4
C(7B)-C(6D)-H(6D)	121.4
C(12B)-C(11D)-C(10B)	117.2(6)
C(1B)#1-N(1B)-C(1B)	118.4(5)
C(1B)-N(2B)-C(8B)	115.1(3)
C(1B)-N(2B)-B(1B)	121.9(3)
C(8B)-N(2B)-B(1B)	122.1(3)
C(9B)-N(3B)-C(8B)	117.5(3)
C(9B)#1-N(4B)-C(9B)	112.9(4)
C(9B)#1-N(4B)-B(1B)	123.2(2)
C(9B)-N(4B)-B(1B)	123.2(2)
N(1B)-C(1B)-N(2B)	122.2(4)
N(1B)-C(1B)-C(2B)	132.8(4)
N(2B)-C(1B)-C(2B)	103.4(4)
C(3D)-C(2B)-C(7B)	120.7(6)
C(3B)-C(2B)-C(7B)	120.7(6)
C(3D)-C(2B)-C(1B)	131.0(7)
C(3B)-C(2B)-C(1B)	131.0(7)
C(7B)-C(2B)-C(1B)	108.2(4)
C(3D)-C(4B)-C(5B)	122.1(8)
C(3B)-C(4B)-C(5B)	122.1(8)
C(3B)-C(4B)-H(4B)	118.9
C(5B)-C(4B)-H(4B)	118.9
C(6D)-C(5B)-C(4B)	121.5(8)

119.2 119.2 120.4(5) 120.4(5)
119.2 120.4(5) 120.4(5)
120.4(5) 120.4(5)
120.4(5)
107 8(4)
107.8(4)
131.7(6)
131.7(6)
122.6(3)
131.6(4)
104.3(4)
121.9(3)
131.8(3)
105.1(3)
120.8(3)
120.8(3)
107.9(2)
131.2(4)
131.2(4)
121.9(3)
121.9(3)
119.0
119.0
105.0(3)
105.0(3)
106.1(4)
113.5(3)
113.3(2)
113.3(2)

#1 x,-y+1,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1A)	44(1)	50(1)	30(1)	0	14(1)	0
C(3A)	63(2)	85(3)	41(2)	-11(2)	14(2)	28(2)
C(6A)	68(2)	53(2)	54(2)	-9(2)	7(2)	14(2)
C(11A)	45(2)	96(3)	36(2)	10(2)	16(1)	-10(2)
Cl(2A)	77(1)	117(1)	41(1)	-1(1)	33(1)	35(1)
Cl(3A)	146(5)	57(3)	91(4)	-12(2)	54(3)	-23(3)
Cl(4A)	55(1)	93(2)	67(1)	25(1)	17(1)	-18(1)
C(3C)	63(2)	85(3)	41(2)	-11(2)	14(2)	28(2)
C(6C)	68(2)	53(2)	54(2)	-9(2)	7(2)	14(2)
C(11C)	45(2)	96(3)	36(2)	10(2)	16(1)	-10(2)
N(1A)	42(2)	75(3)	34(2)	0	18(2)	0
N(2A)	42(1)	47(2)	30(1)	-1(1)	16(1)	4(1)
N(3A)	54(2)	43(2)	36(1)	2(1)	18(1)	-1(1)
N(4A)	43(2)	44(2)	28(2)	0	16(2)	0
C(1A)	39(2)	65(2)	29(1)	-2(1)	13(1)	8(2)
C(2A)	49(2)	62(2)	36(2)	-4(2)	13(1)	18(2)
C(4A)	80(3)	90(3)	47(2)	-17(2)	14(2)	36(3)
C(5A)	82(3)	61(3)	58(2)	-21(2)	2(2)	24(2)
C(7A)	51(2)	48(2)	38(2)	-6(1)	9(1)	10(2)
C(8A)	48(2)	46(2)	32(2)	0(1)	10(1)	3(2)
C(9A)	42(2)	47(2)	30(1)	3(1)	14(1)	-5(1)
C(10A)	39(2)	65(2)	28(1)	1(1)	13(1)	-3(1)
C(12A)	41(2)	124(3)	34(2)	6(2)	17(1)	-10(2)
B(1A)	43(3)	41(3)	31(2)	0	19(2)	0
Cl(1B)	62(1)	59(1)	30(1)	0	24(1)	0
C(3B)	147(6)	203(7)	59(3)	-53(4)	67(4)	-116(5)
C(6B)	214(7)	94(4)	104(4)	-44(4)	128(5)	-69(5)
C(11B)	70(3)	173(6)	41(2)	23(3)	33(2)	29(3)
Cl(2B)	65(2)	196(4)	47(1)	-20(2)	17(1)	-46(2)
Cl(3B)	173(4)	55(2)	140(3)	-15(2)	117(3)	-2(2)
Cl(4B)	98(2)	138(3)	72(2)	43(2)	54(1)	65(2)

Table S5. Anisotropic displacement parameters (Å²x 10³) for Cl- α Cl₃BsubPc. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

C(3D)	147(6)	203(7)	59(3)	-53(4)	67(4)	-116(5)
C(6D)	214(7)	94(4)	104(4)	-44(4)	128(5)	-69(5)
C(11D)	70(3)	173(6)	41(2)	23(3)	33(2)	29(3)
N(1B)	57(3)	123(5)	34(2)	0	23(2)	0
N(2B)	58(2)	65(2)	32(1)	-6(1)	24(1)	-10(2)
N(3B)	87(3)	57(2)	52(2)	10(2)	44(2)	12(2)
N(4B)	54(2)	54(2)	31(2)	0	19(2)	0
C(1B)	61(2)	98(3)	40(2)	-12(2)	32(2)	-21(2)
C(2B)	112(4)	111(4)	48(2)	-36(2)	54(3)	-66(3)
C(4B)	258(11)	162(9)	89(5)	-78(5)	116(7)	-152(8)
C(5B)	347(15)	106(6)	141(8)	-75(5)	197(10)	-125(8)
C(7B)	123(4)	76(3)	63(3)	-26(2)	69(3)	-44(3)
C(8B)	96(3)	47(2)	48(2)	-5(2)	49(2)	-9(2)
C(9B)	67(2)	65(2)	36(2)	10(2)	29(2)	16(2)
C(10B)	55(2)	108(3)	34(2)	11(2)	24(2)	14(2)
C(12B)	56(2)	229(8)	43(2)	16(3)	25(2)	27(3)
B(1B)	56(3)	51(3)	31(2)	0	23(2)	0

	Х	у	Z	U(eq)
H(3CA)	7357	3313	-1628	78
H(6CA)	6167	1812	-326	77
H(4A)	7003	1927	-2072	91
H(5A)	6415	1182	-1447	91
H(12A)	4238	4246	1690	79
H(3D)	8346	6698	6795	154
H(6D)	6402	8230	5317	140
H(4B)	8218	8083	7215	186
H(5B)	7279	8859	6462	200
H(12B)	3351	5756	3399	129

Table S6. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for Cl- α Cl₃BsubPc.

Table S7. Torsion angles [°] for Cl-αCl₃BsubPc.

C(1A)#1-N(1A)-C(1A)-N(2A)	-7.6(6)
C(1A)#1-N(1A)-C(1A)-C(2A)	155.3(3)
C(8A)-N(2A)-C(1A)-N(1A)	155.5(3)
B(1A)-N(2A)-C(1A)-N(1A)	-12.3(5)
C(8A)-N(2A)-C(1A)-C(2A)	-11.1(3)
B(1A)-N(2A)-C(1A)-C(2A)	-178.9(3)
C(4A)-C(3C)-C(2A)-C(7A)	-0.3(5)
C(4A)-C(3C)-C(2A)-C(1A)	-176.1(4)
C(4A)-C(3A)-C(2A)-C(7A)	-0.3(5)
Cl(2A)-C(3A)-C(2A)-C(7A)	-175.0(3)
C(4A)-C(3A)-C(2A)-C(1A)	-176.1(4)
Cl(2A)-C(3A)-C(2A)-C(1A)	9.2(5)
N(1A)-C(1A)-C(2A)-C(3C)	17.8(6)
N(2A)-C(1A)-C(2A)-C(3C)	-177.1(4)
N(1A)-C(1A)-C(2A)-C(3A)	17.8(6)
N(2A)-C(1A)-C(2A)-C(3A)	-177.1(4)
N(1A)-C(1A)-C(2A)-C(7A)	-158.4(4)
N(2A)-C(1A)-C(2A)-C(7A)	6.8(3)
C(2A)-C(3C)-C(4A)-C(5A)	0.7(6)
C(2A)-C(3A)-C(4A)-C(5A)	0.7(6)
Cl(2A)-C(3A)-C(4A)-C(5A)	175.4(3)
C(3A)-C(4A)-C(5A)-C(6A)	-0.3(6)
C(3C)-C(4A)-C(5A)-C(6C)	-0.3(6)
C(7A)-C(6A)-C(5A)-C(4A)	-0.5(6)
Cl(3A)-C(6A)-C(5A)-C(4A)	-177.4(4)
C(7A)-C(6C)-C(5A)-C(4A)	-0.5(6)
C(5A)-C(6C)-C(7A)-C(2A)	0.9(5)
C(5A)-C(6C)-C(7A)-C(8A)	176.9(4)
C(5A)-C(6A)-C(7A)-C(2A)	0.9(5)
Cl(3A)-C(6A)-C(7A)-C(2A)	177.5(4)
C(5A)-C(6A)-C(7A)-C(8A)	176.9(4)
Cl(3A)-C(6A)-C(7A)-C(8A)	-6.5(6)
C(3C)-C(2A)-C(7A)-C(6C)	-0.5(5)
C(1A)-C(2A)-C(7A)-C(6C)	176.3(3)

C(3A)-C(2A)-C(7A)-C(6A)	-0.5(5)
C(1A)-C(2A)-C(7A)-C(6A)	176.3(3)
C(3C)-C(2A)-C(7A)-C(8A)	-177.5(3)
C(3A)-C(2A)-C(7A)-C(8A)	-177.5(3)
C(1A)-C(2A)-C(7A)-C(8A)	-0.7(3)
C(9A)-N(3A)-C(8A)-N(2A)	8.9(4)
C(9A)-N(3A)-C(8A)-C(7A)	-155.5(3)
C(1A)-N(2A)-C(8A)-N(3A)	-157.1(3)
B(1A)-N(2A)-C(8A)-N(3A)	10.7(5)
C(1A)-N(2A)-C(8A)-C(7A)	10.7(3)
B(1A)-N(2A)-C(8A)-C(7A)	178.5(3)
C(6C)-C(7A)-C(8A)-N(3A)	-15.6(6)
C(6A)-C(7A)-C(8A)-N(3A)	-15.6(6)
C(2A)-C(7A)-C(8A)-N(3A)	160.8(3)
C(6C)-C(7A)-C(8A)-N(2A)	177.9(3)
C(6A)-C(7A)-C(8A)-N(2A)	177.9(3)
C(2A)-C(7A)-C(8A)-N(2A)	-5.6(3)
C(8A)-N(3A)-C(9A)-N(4A)	-7.0(4)
C(8A)-N(3A)-C(9A)-C(10A)	159.3(3)
C(9A)#1-N(4A)-C(9A)-N(3A)	157.0(2)
B(1A)-N(4A)-C(9A)-N(3A)	-14.6(5)
C(9A)#1-N(4A)-C(9A)-C(10A)	-12.5(4)
B(1A)-N(4A)-C(9A)-C(10A)	175.9(3)
C(12A)-C(11C)-C(10A)-C(10A)#1	-1.1(4)
C(12A)-C(11C)-C(10A)-C(9A)	177.0(3)
C(12A)-C(11A)-C(10A)-C(10A)#1	-1.1(4)
Cl(4A)-C(11A)-C(10A)-C(10A)#1	-168.85(17)
C(12A)-C(11A)-C(10A)-C(9A)	177.0(3)
Cl(4A)-C(11A)-C(10A)-C(9A)	9.3(5)
N(3A)-C(9A)-C(10A)-C(11C)	20.6(5)
N(4A)-C(9A)-C(10A)-C(11C)	-171.2(3)
N(3A)-C(9A)-C(10A)-C(11A)	20.6(5)
N(4A)-C(9A)-C(10A)-C(11A)	-171.2(3)
N(3A)-C(9A)-C(10A)-C(10A)#1	-161.1(3)
N(4A)-C(9A)-C(10A)-C(10A)#1	7.1(2)
C(10A)-C(11C)-C(12A)-C(12A)#1	1.2(4)

C(10A)-C(11A)-C(12A)-C(12A)#1	1.2(4)
Cl(4A)-C(11A)-C(12A)-C(12A)#1	168.98(16)
C(9A)-N(4A)-B(1A)-N(2A)	29.5(4)
C(9A)#1-N(4A)-B(1A)-N(2A)	-141.4(3)
C(9A)-N(4A)-B(1A)-N(2A)#1	141.4(3)
C(9A)#1-N(4A)-B(1A)-N(2A)#1	-29.5(4)
C(9A)-N(4A)-B(1A)-Cl(1A)	-94.5(3)
C(9A)#1-N(4A)-B(1A)-Cl(1A)	94.5(3)
C(8A)-N(2A)-B(1A)-N(4A)	-27.6(4)
C(1A)-N(2A)-B(1A)-N(4A)	139.2(3)
C(8A)-N(2A)-B(1A)-N(2A)#1	-139.1(3)
C(1A)-N(2A)-B(1A)-N(2A)#1	27.7(5)
C(8A)-N(2A)-B(1A)-Cl(1A)	97.3(3)
C(1A)-N(2A)-B(1A)-Cl(1A)	-95.9(3)
C(1B)#1-N(1B)-C(1B)-N(2B)	-7.2(7)
C(1B)#1-N(1B)-C(1B)-C(2B)	155.7(3)
C(8B)-N(2B)-C(1B)-N(1B)	155.9(4)
B(1B)-N(2B)-C(1B)-N(1B)	-12.9(5)
C(8B)-N(2B)-C(1B)-C(2B)	-11.3(4)
B(1B)-N(2B)-C(1B)-C(2B)	179.9(3)
C(4B)-C(3D)-C(2B)-C(7B)	0.2(7)
C(4B)-C(3D)-C(2B)-C(1B)	-175.4(5)
C(4B)-C(3B)-C(2B)-C(7B)	0.2(7)
Cl(2B)-C(3B)-C(2B)-C(7B)	-177.7(4)
C(4B)-C(3B)-C(2B)-C(1B)	-175.4(5)
Cl(2B)-C(3B)-C(2B)-C(1B)	6.6(7)
N(1B)-C(1B)-C(2B)-C(3D)	17.4(7)
N(2B)-C(1B)-C(2B)-C(3D)	-177.5(4)
N(1B)-C(1B)-C(2B)-C(3B)	17.4(7)
N(2B)-C(1B)-C(2B)-C(3B)	-177.5(4)
N(1B)-C(1B)-C(2B)-C(7B)	-158.7(4)
N(2B)-C(1B)-C(2B)-C(7B)	6.5(4)
C(2B)-C(3D)-C(4B)-C(5B)	-1.4(10)
C(2B)-C(3B)-C(4B)-C(5B)	-1.4(10)
Cl(2B)-C(3B)-C(4B)-C(5B)	176.8(6)
C(7B)-C(6D)-C(5B)-C(4B)	-1.7(9)

Cl(3B)-C(6B)-C(5B)-C(4B)	-178.8(6)
C(7B)-C(6B)-C(5B)-C(4B)	-1.7(9)
C(3D)-C(4B)-C(5B)-C(6D)	2.2(12)
C(3B)-C(4B)-C(5B)-C(6B)	2.2(12)
C(3B)-C(2B)-C(7B)-C(6B)	0.2(6)
C(1B)-C(2B)-C(7B)-C(6B)	176.8(3)
C(3D)-C(2B)-C(7B)-C(6D)	0.2(6)
C(1B)-C(2B)-C(7B)-C(6D)	176.8(3)
C(3D)-C(2B)-C(7B)-C(8B)	-176.7(3)
C(3B)-C(2B)-C(7B)-C(8B)	-176.7(3)
C(1B)-C(2B)-C(7B)-C(8B)	-0.1(4)
Cl(3B)-C(6B)-C(7B)-C(2B)	177.1(4)
C(5B)-C(6B)-C(7B)-C(2B)	0.5(6)
Cl(3B)-C(6B)-C(7B)-C(8B)	-6.9(7)
C(5B)-C(6B)-C(7B)-C(8B)	176.5(4)
C(5B)-C(6D)-C(7B)-C(2B)	0.5(6)
C(5B)-C(6D)-C(7B)-C(8B)	176.5(4)
C(9B)-N(3B)-C(8B)-N(2B)	8.2(5)
C(9B)-N(3B)-C(8B)-C(7B)	-155.2(4)
C(1B)-N(2B)-C(8B)-N(3B)	-155.9(3)
B(1B)-N(2B)-C(8B)-N(3B)	12.9(5)
C(1B)-N(2B)-C(8B)-C(7B)	11.4(4)
B(1B)-N(2B)-C(8B)-C(7B)	-179.8(3)
C(2B)-C(7B)-C(8B)-N(3B)	159.3(4)
C(6B)-C(7B)-C(8B)-N(3B)	-17.1(7)
C(6D)-C(7B)-C(8B)-N(3B)	-17.1(7)
C(2B)-C(7B)-C(8B)-N(2B)	-6.3(4)
C(6B)-C(7B)-C(8B)-N(2B)	177.3(4)
C(6D)-C(7B)-C(8B)-N(2B)	177.3(4)
C(8B)-N(3B)-C(9B)-N(4B)	-8.4(5)
C(8B)-N(3B)-C(9B)-C(10B)	156.6(3)
C(9B)#1-N(4B)-C(9B)-N(3B)	157.8(2)
B(1B)-N(4B)-C(9B)-N(3B)	-12.7(5)
C(9B)#1-N(4B)-C(9B)-C(10B)	-10.8(5)
B(1B)-N(4B)-C(9B)-C(10B)	178.8(3)
C(12B)-C(11B)-C(10B)-C(10B)#1	-1.4(4)

Cl(4B)-C(11B)-C(10B)-C(10B)#1	-172.9(2)
C(12B)-C(11B)-C(10B)-C(9B)	-179.5(3)
Cl(4B)-C(11B)-C(10B)-C(9B)	8.9(6)
C(12B)-C(11D)-C(10B)-C(10B)#1	-1.4(4)
C(12B)-C(11D)-C(10B)-C(9B)	-179.5(3)
N(3B)-C(9B)-C(10B)-C(10B)#1	-160.7(3)
N(4B)-C(9B)-C(10B)-C(10B)#1	6.2(3)
N(3B)-C(9B)-C(10B)-C(11B)	17.6(6)
N(4B)-C(9B)-C(10B)-C(11B)	-175.5(4)
N(3B)-C(9B)-C(10B)-C(11D)	17.6(6)
N(4B)-C(9B)-C(10B)-C(11D)	-175.5(4)
C(10B)-C(11D)-C(12B)-C(12B)#1	1.4(4)
C(10B)-C(11B)-C(12B)-C(12B)#1	1.4(4)
Cl(4B)-C(11B)-C(12B)-C(12B)#1	173.33(19)
C(9B)#1-N(4B)-B(1B)-N(2B)	-140.5(3)
C(9B)-N(4B)-B(1B)-N(2B)	28.9(5)
C(9B)#1-N(4B)-B(1B)-N(2B)#1	-28.9(5)
C(9B)-N(4B)-B(1B)-N(2B)#1	140.5(3)
C(9B)#1-N(4B)-B(1B)-Cl(1B)	95.3(3)
C(9B)-N(4B)-B(1B)-Cl(1B)	-95.3(3)
C(1B)-N(2B)-B(1B)-N(4B)	139.2(3)
C(8B)-N(2B)-B(1B)-N(4B)	-28.8(4)
C(1B)-N(2B)-B(1B)-N(2B)#1	28.4(5)
C(8B)-N(2B)-B(1B)-N(2B)#1	-139.6(3)
C(1B)-N(2B)-B(1B)-Cl(1B)	-96.4(3)
C(8B)-N(2B)-B(1B)-Cl(1B)	95.5(4)

#1 x,-y+1,z

Identification code	Cl-βCl ₃ BsubPc		
CCDC deposition number	2051785		
Empirical formula	C24 H9.11 B Cl3.89 N6		
Formula weight	530.19		
Temperature	150(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 11.1595(6) Å	<i>α</i> = 90°.	
	b = 10.3924(4) Å	β=102.519(4)°.	
	c = 19.5637(8) Å	$\gamma = 90^{\circ}$.	
Volume	2214.94(18) Å ³		
Z	4		
Density (calculated)	1.590 Mg/m ³		
Absorption coefficient	4.969 mm ⁻¹		
F(000)	1065		
Crystal size	0.100 x 0.030 x 0.010 mm ³		
Theta range for data collection	4.058 to 67.985°.		
Index ranges	-13<=h<=13, -12<=k<=12, -23<=l<=23		
Reflections collected	30857		
Independent reflections	4019 [R(int) = 0.0993]		
Completeness to theta = 67.679°	99.8 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.7530 and 0.6155		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4019 / 0 / 340		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0779, w $R2 = 0.1858$		
R indices (all data)	R1 = 0.1089, WR2 = 0.2072		
Extinction coefficient	0.0015(3)		
Largest diff. peak and hole	0.776 and -0.842 e.Å ⁻³		

Table S8. Crystal data and structure refinement for $Cl-\beta Cl_3BsubPc$.

	X	У	Z	U(eq)
Cl(1)	4726(1)	9253(1)	2927(1)	62(1)
Cl(2)	9914(6)	3225(6)	4667(4)	103(3)
Cl(3)	8256(2)	2970(2)	5532(1)	86(1)
Cl(4)	-536(2)	3173(2)	2661(2)	74(1)
Cl(5)	-1182(5)	3775(5)	1584(4)	128(3)
Cl(6)	8451(3)	6319(3)	-184(1)	140(2)
N(1)	5775(4)	6812(3)	3215(2)	47(1)
N(2)	4239(4)	5733(4)	3665(2)	55(1)
N(3)	3741(4)	6812(4)	2572(2)	54(1)
N(4)	3397(5)	6853(4)	1327(3)	71(1)
N(5)	5335(4)	7398(4)	2022(2)	57(1)
N(6)	7373(4)	6822(4)	2584(2)	56(1)
C(1)	6958(5)	6564(4)	3160(3)	51(1)
C(2)	7465(5)	5733(5)	3741(3)	54(1)
C(3)	8615(5)	5145(6)	3928(3)	67(2)
C(4)	8791(6)	4271(6)	4470(3)	76(2)
C(5)	7884(6)	4018(5)	4836(3)	69(2)
C(4A)	8791(6)	4271(6)	4470(3)	76(2)
C(5A)	7884(6)	4018(5)	4836(3)	69(2)
C(6)	6741(5)	4589(5)	4655(3)	61(1)
C(7)	6528(5)	5435(4)	4095(2)	52(1)
C(8)	5416(5)	6043(4)	3704(2)	50(1)
C(9)	3425(5)	6050(5)	3076(3)	58(1)
C(10)	2258(5)	5485(5)	2740(4)	72(2)
C(11)	1488(5)	4648(6)	3002(5)	88(2)
C(12)	461(7)	4217(7)	2490(7)	116(4)
C(13)	221(8)	4580(9)	1783(7)	122(4)
C(12A)	461(7)	4217(7)	2490(7)	116(4)
C(13A)	221(8)	4580(9)	1783(7)	122(4)
C(14)	981(6)	5369(7)	1560(5)	101(3)
C(15)	2002(5)	5832(6)	2024(4)	78(2)

Table S9. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for **Cl-\betaCl₃BsubPc**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(16)	3021(5)	6611(5)	1918(3)	64(1)
C(17)	4577(6)	7151(5)	1388(3)	64(2)
C(18)	5360(7)	6986(5)	900(3)	70(2)
C(19)	5102(8)	6712(5)	174(3)	85(2)
C(20)	6086(10)	6497(6)	-139(4)	96(3)
C(21)	7281(10)	6538(6)	255(4)	96(3)
C(21A)	7281(10)	6538(6)	255(4)	96(3)
C(22)	7568(7)	6771(5)	965(3)	79(2)
C(23)	6575(6)	7006(5)	1282(3)	65(2)
C(24)	6543(6)	7156(5)	2015(3)	59(1)
B(1)	4896(5)	7528(5)	2675(3)	51(1)

Cl(1)-B(1)	1.879(5)
Cl(2)-C(4)	1.640(8)
Cl(3)-C(5)	1.722(6)
Cl(4)-C(12)	1.639(8)
Cl(4)-Cl(5)	2.167(7)
Cl(5)-C(13)	1.744(10)
Cl(6)-C(21)	1.725(8)
N(1)-C(1)	1.371(6)
N(1)-C(8)	1.372(6)
N(1)-B(1)	1.477(7)
N(2)-C(8)	1.339(6)
N(2)-C(9)	1.345(7)
N(3)-C(9)	1.369(7)
N(3)-C(16)	1.372(7)
N(3)-B(1)	1.464(7)
N(4)-C(17)	1.332(8)
N(4)-C(16)	1.337(8)
N(5)-C(17)	1.365(7)
N(5)-C(24)	1.374(7)
N(5)-B(1)	1.471(7)
N(6)-C(24)	1.331(7)
N(6)-C(1)	1.335(6)
C(1)-C(2)	1.442(7)
C(2)-C(3)	1.397(7)
C(2)-C(7)	1.408(7)
C(3)-C(4A)	1.378(9)
C(3)-C(4)	1.378(9)
C(3)-H(3A)	0.9500
C(4)-C(5)	1.385(9)
C(5)-C(6)	1.382(8)
C(4A)-C(5A)	1.385(9)
C(4A)-H(4A)	0.9500
C(5A)-C(6)	1.382(8)
C(5A)-H(5A)	0.9500

Table S10. Bond lengths [Å] and angles [°] for $Cl-\beta Cl_3BsubPc$.

C(6)-C(7)	1.385(7)
C(6)-H(6A)	0.9500
C(7)-C(8)	1.453(7)
C(9)-C(10)	1.449(8)
C(10)-C(11)	1.396(9)
C(10)-C(15)	1.416(10)
C(11)-C(12A)	1.420(12)
C(11)-C(12)	1.420(12)
C(11)-H(11)	0.9500
C(12)-C(13)	1.404(15)
C(13)-C(14)	1.320(14)
C(12A)-C(13A)	1.404(15)
C(12A)-H(12A)	0.9500
C(13A)-C(14)	1.320(14)
C(13A)-H(13A)	0.9500
C(14)-C(15)	1.380(9)
C(14)-H(14)	0.9500
C(15)-C(16)	1.446(9)
C(17)-C(18)	1.439(8)
C(18)-C(23)	1.400(9)
C(18)-C(19)	1.414(8)
C(19)-C(20)	1.387(11)
C(19)-H(19A)	0.9500
C(20)-C(21A)	1.388(12)
C(20)-C(21)	1.388(12)
C(20)-H(20A)	0.9500
C(21)-C(22)	1.377(9)
C(21A)-C(22)	1.377(9)
C(21A)-H(21A)	0.9500
C(22)-C(23)	1.404(9)
C(22)-H(22A)	0.9500
C(23)-C(24)	1.452(7)
C(12)-Cl(4)-Cl(5)	73.1(5)
C(13)-Cl(5)-Cl(4)	80.1(5)
C(1)-N(1)-C(8)	112.1(4)

C(1)-N(1)-B(1)	122.7(4)
C(8)-N(1)-B(1)	122.9(4)
C(8)-N(2)-C(9)	117.5(4)
C(9)-N(3)-C(16)	113.1(5)
C(9)-N(3)-B(1)	123.5(4)
C(16)-N(3)-B(1)	121.8(5)
C(17)-N(4)-C(16)	117.1(5)
C(17)-N(5)-C(24)	112.0(5)
C(17)-N(5)-B(1)	123.2(5)
C(24)-N(5)-B(1)	122.5(4)
C(24)-N(6)-C(1)	116.9(5)
N(6)-C(1)-N(1)	123.0(5)
N(6)-C(1)-C(2)	129.5(5)
N(1)-C(1)-C(2)	105.7(4)
C(3)-C(2)-C(7)	120.8(5)
C(3)-C(2)-C(1)	130.6(5)
C(7)-C(2)-C(1)	108.2(4)
C(4A)-C(3)-C(2)	117.4(6)
C(4)-C(3)-C(2)	117.4(6)
C(4)-C(3)-H(3A)	121.3
C(2)-C(3)-H(3A)	121.3
C(3)-C(4)-C(5)	121.6(6)
C(3)-C(4)-Cl(2)	126.3(6)
C(5)-C(4)-Cl(2)	111.1(6)
C(6)-C(5)-C(4)	121.6(5)
C(6)-C(5)-Cl(3)	121.7(5)
C(4)-C(5)-Cl(3)	116.8(5)
C(3)-C(4A)-C(5A)	121.6(6)
C(3)-C(4A)-H(4A)	119.2
C(5A)-C(4A)-H(4A)	119.2
C(6)-C(5A)-C(4A)	121.6(5)
C(6)-C(5A)-H(5A)	119.2
C(4A)-C(5A)-H(5A)	119.2
C(5A)-C(6)-C(7)	117.8(5)
C(5)-C(6)-C(7)	117.8(5)
C(5)-C(6)-H(6A)	121.1

C(7)-C(6)-H(6A)	121.1
C(6)-C(7)-C(2)	120.7(5)
C(6)-C(7)-C(8)	132.3(5)
C(2)-C(7)-C(8)	106.6(4)
N(2)-C(8)-N(1)	122.1(4)
N(2)-C(8)-C(7)	129.9(4)
N(1)-C(8)-C(7)	106.0(4)
N(2)-C(9)-N(3)	121.8(5)
N(2)-C(9)-C(10)	131.5(5)
N(3)-C(9)-C(10)	104.7(5)
C(11)-C(10)-C(15)	120.9(6)
C(11)-C(10)-C(9)	130.6(7)
C(15)-C(10)-C(9)	108.3(5)
C(10)-C(11)-C(12A)	113.8(8)
C(10)-C(11)-C(12)	113.8(8)
С(10)-С(11)-Н(11)	123.1
С(12)-С(11)-Н(11)	123.1
C(13)-C(12)-C(11)	124.3(8)
C(13)-C(12)-Cl(4)	112.7(8)
C(11)-C(12)-Cl(4)	122.9(10)
C(14)-C(13)-C(12)	119.6(8)
C(14)-C(13)-Cl(5)	146.6(10)
C(12)-C(13)-Cl(5)	93.5(9)
C(13A)-C(12A)-C(11)	124.3(8)
C(13A)-C(12A)-H(12A)	117.9
С(11)-С(12А)-Н(12А)	117.9
C(14)-C(13A)-C(12A)	119.6(8)
С(14)-С(13А)-Н(13А)	120.2
C(12A)-C(13A)-H(13A)	120.2
C(13A)-C(14)-C(15)	119.9(10)
C(13)-C(14)-C(15)	119.9(10)
C(13)-C(14)-H(14)	120.1
C(15)-C(14)-H(14)	120.1
C(14)-C(15)-C(10)	121.5(7)
C(14)-C(15)-C(16)	131.6(8)
C(10)-C(15)-C(16)	106.7(5)

N(4)-C(16)-N(3)	123.2(5)
N(4)-C(16)-C(15)	129.3(5)
N(3)-C(16)-C(15)	105.8(5)
N(4)-C(17)-N(5)	122.1(5)
N(4)-C(17)-C(18)	130.0(5)
N(5)-C(17)-C(18)	106.2(6)
C(23)-C(18)-C(19)	120.1(6)
C(23)-C(18)-C(17)	107.5(5)
C(19)-C(18)-C(17)	132.1(7)
C(20)-C(19)-C(18)	117.8(8)
C(20)-C(19)-H(19A)	121.1
C(18)-C(19)-H(19A)	121.1
C(19)-C(20)-C(21A)	120.5(6)
C(19)-C(20)-C(21)	120.5(6)
C(19)-C(20)-H(20A)	119.7
C(21)-C(20)-H(20A)	119.7
C(22)-C(21)-C(20)	123.3(8)
C(22)-C(21)-Cl(6)	119.3(8)
C(20)-C(21)-Cl(6)	117.4(6)
C(22)-C(21A)-C(20)	123.3(8)
C(22)-C(21A)-H(21A)	118.3
C(20)-C(21A)-H(21A)	118.3
C(21A)-C(22)-C(23)	116.3(8)
C(21)-C(22)-C(23)	116.3(8)
C(21)-C(22)-H(22A)	121.9
C(23)-C(22)-H(22A)	121.9
C(18)-C(23)-C(22)	121.9(6)
C(18)-C(23)-C(24)	107.5(5)
C(22)-C(23)-C(24)	130.3(6)
N(6)-C(24)-N(5)	123.1(5)
N(6)-C(24)-C(23)	129.6(5)
N(5)-C(24)-C(23)	105.3(5)
N(3)-B(1)-N(5)	106.4(4)
N(3)-B(1)-N(1)	105.7(4)
N(5)-B(1)-N(1)	106.3(4)
N(3)-B(1)-Cl(1)	112.6(4)

N(5)-B(1)-Cl(1)	112.8(3)
N(1)-B(1)-Cl(1)	112.5(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	86(1)	33(1)	65(1)	-3(1)	13(1)	2(1)
Cl(2)	99(5)	72(4)	110(5)	-13(3)	-36(4)	16(3)
Cl(3)	98(2)	74(2)	75(2)	9(1)	-3(1)	30(1)
Cl(4)	70(2)	60(2)	101(2)	-11(1)	37(1)	-26(1)
Cl(5)	85(3)	99(4)	179(6)	30(3)	-21(3)	-30(3)
Cl(6)	242(4)	118(2)	89(2)	20(1)	101(2)	57(2)
N(1)	55(2)	35(2)	50(2)	-2(2)	12(2)	-3(2)
N(2)	59(3)	40(2)	69(3)	-2(2)	22(2)	-1(2)
N(3)	56(2)	40(2)	64(3)	-2(2)	7(2)	2(2)
N(4)	88(4)	50(3)	64(3)	-4(2)	-6(3)	13(2)
N(5)	80(3)	34(2)	54(2)	1(2)	11(2)	-2(2)
N(6)	66(3)	49(2)	56(2)	-6(2)	21(2)	-7(2)
C(1)	54(3)	41(2)	58(3)	-6(2)	14(2)	-3(2)
C(2)	61(3)	49(3)	52(3)	-7(2)	8(2)	0(2)
C(3)	59(3)	71(4)	67(3)	-13(3)	7(3)	8(3)
C(4)	86(4)	74(4)	62(3)	-8(3)	2(3)	23(3)
C(5)	90(4)	51(3)	57(3)	-5(2)	-6(3)	17(3)
C(4A)	86(4)	74(4)	62(3)	-8(3)	2(3)	23(3)
C(5A)	90(4)	51(3)	57(3)	-5(2)	-6(3)	17(3)
C(6)	81(4)	45(3)	54(3)	-5(2)	12(3)	0(3)
C(7)	62(3)	41(2)	51(3)	-5(2)	11(2)	3(2)
C(8)	61(3)	37(2)	54(3)	-2(2)	20(2)	3(2)
C(9)	60(3)	37(2)	78(4)	-9(2)	18(3)	0(2)
C(10)	54(3)	42(3)	122(5)	-18(3)	25(3)	0(2)
C(11)	55(3)	48(3)	168(7)	-20(4)	37(4)	0(3)
C(12)	51(4)	57(4)	246(12)	-54(6)	43(6)	-15(3)
C(13)	73(5)	79(5)	198(11)	-55(7)	-8(6)	9(4)
C(12A)	51(4)	57(4)	246(12)	-54(6)	43(6)	-15(3)
C(13A)	73(5)	79(5)	198(11)	-55(7)	-8(6)	9(4)
C(14)	60(4)	76(4)	152(7)	-47(5)	-9(4)	2(4)
C(15)	57(3)	61(3)	106(5)	-24(3)	-9(3)	9(3)

Table S11. Anisotropic displacement parameters (Å²x 10³) for Cl- β Cl₃BsubPc. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(16)	62(3)	45(3)	78(4)	-11(3)	-6(3)	7(2)
C(17)	95(5)	36(2)	55(3)	2(2)	1(3)	7(3)
C(18)	127(6)	36(3)	50(3)	4(2)	24(3)	3(3)
C(19)	154(7)	39(3)	58(3)	0(2)	12(4)	4(3)
C(20)	198(9)	44(3)	55(4)	0(3)	46(5)	8(4)
C(21)	179(9)	56(4)	65(4)	5(3)	54(5)	10(4)
C(21A)	179(9)	56(4)	65(4)	5(3)	54(5)	10(4)
C(22)	129(6)	49(3)	68(4)	3(3)	43(4)	3(3)
C(23)	108(5)	38(3)	55(3)	0(2)	29(3)	-1(3)
C(24)	79(4)	38(2)	63(3)	2(2)	24(3)	-7(2)
B(1)	59(3)	35(3)	56(3)	0(2)	8(3)	0(2)

	Х	у	Z	U(eq)
H(3A)	9251	5340	3691	80
H(4A)	9553	3830	4596	92
H(5A)	8053	3439	5221	83
H(6A)	6122	4408	4907	73
H(11)	1636	4389	3479	106
H(12A)	-100	3647	2637	140
H(13A)	-484	4259	1466	147
H(14)	825	5618	1082	121
H(19A)	4281	6677	-90	102
H(20A)	5942	6321	-626	115
H(21A)	7934	6398	22	115
H(22A)	8392	6771	1225	94

Table S12. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **Cl-\betaCl₃BsubPc**.

C(24)-N(6)-C(1)-N(1)	-9.9(7)
C(24)-N(6)-C(1)-C(2)	152.7(5)
C(8)-N(1)-C(1)-N(6)	155.7(4)
B(1)-N(1)-C(1)-N(6)	-7.6(7)
C(8)-N(1)-C(1)-C(2)	-10.5(5)
B(1)-N(1)-C(1)-C(2)	-173.7(4)
N(6)-C(1)-C(2)-C(3)	12.4(9)
N(1)-C(1)-C(2)-C(3)	177.3(5)
N(6)-C(1)-C(2)-C(7)	-160.5(5)
N(1)-C(1)-C(2)-C(7)	4.4(5)
C(7)-C(2)-C(3)-C(4A)	-0.2(8)
C(1)-C(2)-C(3)-C(4A)	-172.4(5)
C(7)-C(2)-C(3)-C(4)	-0.2(8)
C(1)-C(2)-C(3)-C(4)	-172.4(5)
C(2)-C(3)-C(4)-C(5)	-2.5(9)
C(2)-C(3)-C(4)-Cl(2)	164.9(5)
C(3)-C(4)-C(5)-C(6)	2.9(9)
Cl(2)-C(4)-C(5)-C(6)	-166.3(5)
C(3)-C(4)-C(5)-Cl(3)	-176.6(5)
Cl(2)-C(4)-C(5)-Cl(3)	14.3(7)
C(2)-C(3)-C(4A)-C(5A)	-2.5(9)
C(3)-C(4A)-C(5A)-C(6)	2.9(9)
C(4A)-C(5A)-C(6)-C(7)	-0.4(8)
C(4)-C(5)-C(6)-C(7)	-0.4(8)
Cl(3)-C(5)-C(6)-C(7)	179.0(4)
C(5A)-C(6)-C(7)-C(2)	-2.3(7)
C(5)-C(6)-C(7)-C(2)	-2.3(7)
C(5A)-C(6)-C(7)-C(8)	169.5(5)
C(5)-C(6)-C(7)-C(8)	169.5(5)
C(3)-C(2)-C(7)-C(6)	2.6(7)
C(1)-C(2)-C(7)-C(6)	176.4(4)
C(3)-C(2)-C(7)-C(8)	-171.1(4)
C(1)-C(2)-C(7)-C(8)	2.7(5)
C(9)-N(2)-C(8)-N(1)	9.2(6)

Table S13. Torsion angles [°] for Cl-βCl₃BsubPc.

C(9)-N(2)-C(8)-C(7)	-152.2(5)
C(1)-N(1)-C(8)-N(2)	-153.1(4)
B(1)-N(1)-C(8)-N(2)	10.1(7)
C(1)-N(1)-C(8)-C(7)	12.2(5)
B(1)-N(1)-C(8)-C(7)	175.4(4)
C(6)-C(7)-C(8)-N(2)	-17.7(9)
C(2)-C(7)-C(8)-N(2)	154.9(5)
C(6)-C(7)-C(8)-N(1)	178.6(5)
C(2)-C(7)-C(8)-N(1)	-8.8(5)
C(8)-N(2)-C(9)-N(3)	-8.8(7)
C(8)-N(2)-C(9)-C(10)	152.9(5)
C(16)-N(3)-C(9)-N(2)	154.5(5)
B(1)-N(3)-C(9)-N(2)	-11.2(7)
C(16)-N(3)-C(9)-C(10)	-11.3(6)
B(1)-N(3)-C(9)-C(10)	-177.1(4)
N(2)-C(9)-C(10)-C(11)	17.4(10)
N(3)-C(9)-C(10)-C(11)	-178.7(5)
N(2)-C(9)-C(10)-C(15)	-157.5(5)
N(3)-C(9)-C(10)-C(15)	6.4(6)
C(15)-C(10)-C(11)-C(12A)	-0.6(8)
C(9)-C(10)-C(11)-C(12A)	-174.9(6)
C(15)-C(10)-C(11)-C(12)	-0.6(8)
C(9)-C(10)-C(11)-C(12)	-174.9(6)
C(10)-C(11)-C(12)-C(13)	0.2(10)
C(10)-C(11)-C(12)-Cl(4)	176.8(5)
Cl(5)-Cl(4)-C(12)-C(13)	-6.6(6)
Cl(5)-Cl(4)-C(12)-C(11)	176.5(7)
C(11)-C(12)-C(13)-C(14)	0.1(13)
Cl(4)-C(12)-C(13)-C(14)	-176.8(6)
C(11)-C(12)-C(13)-Cl(5)	-175.3(6)
Cl(4)-C(12)-C(13)-Cl(5)	7.8(7)
Cl(4)-Cl(5)-C(13)-C(14)	-178.2(13)
Cl(4)-Cl(5)-C(13)-C(12)	-5.5(5)
C(10)-C(11)-C(12A)-C(13A)	0.2(10)
C(11)-C(12A)-C(13A)-C(14)	0.1(13)
C(12A)-C(13A)-C(14)-C(15)	-0.1(12)

C(12)-C(13)-C(14)-C(15)	-0.1(12)
Cl(5)-C(13)-C(14)-C(15)	171.5(10)
C(13A)-C(14)-C(15)-C(10)	-0.3(10)
C(13)-C(14)-C(15)-C(10)	-0.3(10)
C(13A)-C(14)-C(15)-C(16)	174.5(7)
C(13)-C(14)-C(15)-C(16)	174.5(7)
C(11)-C(10)-C(15)-C(14)	0.7(9)
C(9)-C(10)-C(15)-C(14)	176.1(5)
C(11)-C(10)-C(15)-C(16)	-175.2(5)
C(9)-C(10)-C(15)-C(16)	0.2(6)
C(17)-N(4)-C(16)-N(3)	8.4(7)
C(17)-N(4)-C(16)-C(15)	-154.3(5)
C(9)-N(3)-C(16)-N(4)	-154.6(5)
B(1)-N(3)-C(16)-N(4)	11.5(7)
C(9)-N(3)-C(16)-C(15)	11.6(6)
B(1)-N(3)-C(16)-C(15)	177.6(4)
C(14)-C(15)-C(16)-N(4)	-17.1(10)
C(10)-C(15)-C(16)-N(4)	158.3(5)
C(14)-C(15)-C(16)-N(3)	177.9(6)
C(10)-C(15)-C(16)-N(3)	-6.8(6)
C(16)-N(4)-C(17)-N(5)	-9.9(7)
C(16)-N(4)-C(17)-C(18)	153.4(5)
C(24)-N(5)-C(17)-N(4)	154.7(5)
B(1)-N(5)-C(17)-N(4)	-8.5(7)
C(24)-N(5)-C(17)-C(18)	-12.0(5)
B(1)-N(5)-C(17)-C(18)	-175.2(4)
N(4)-C(17)-C(18)-C(23)	-159.1(5)
N(5)-C(17)-C(18)-C(23)	6.2(5)
N(4)-C(17)-C(18)-C(19)	14.5(9)
N(5)-C(17)-C(18)-C(19)	179.8(5)
C(23)-C(18)-C(19)-C(20)	-1.4(8)
C(17)-C(18)-C(19)-C(20)	-174.3(5)
C(18)-C(19)-C(20)-C(21A)	0.7(9)
C(18)-C(19)-C(20)-C(21)	0.7(9)
C(19)-C(20)-C(21)-C(22)	0.9(10)
C(19)-C(20)-C(21)-Cl(6)	-177.6(5)

C(19)-C(20)-C(21A)-C(22)	0.9(10)
C(20)-C(21A)-C(22)-C(23)	-1.7(9)
C(20)-C(21)-C(22)-C(23)	-1.7(9)
Cl(6)-C(21)-C(22)-C(23)	176.8(4)
C(19)-C(18)-C(23)-C(22)	0.5(8)
C(17)-C(18)-C(23)-C(22)	175.0(5)
C(19)-C(18)-C(23)-C(24)	-173.2(5)
C(17)-C(18)-C(23)-C(24)	1.3(5)
C(21A)-C(22)-C(23)-C(18)	1.0(8)
C(21)-C(22)-C(23)-C(18)	1.0(8)
C(21A)-C(22)-C(23)-C(24)	173.2(5)
C(21)-C(22)-C(23)-C(24)	173.2(5)
C(1)-N(6)-C(24)-N(5)	8.3(7)
C(1)-N(6)-C(24)-C(23)	-152.9(5)
C(17)-N(5)-C(24)-N(6)	-152.4(5)
B(1)-N(5)-C(24)-N(6)	10.9(7)
C(17)-N(5)-C(24)-C(23)	12.7(5)
B(1)-N(5)-C(24)-C(23)	176.0(4)
C(18)-C(23)-C(24)-N(6)	155.6(5)
C(22)-C(23)-C(24)-N(6)	-17.5(9)
C(18)-C(23)-C(24)-N(5)	-8.2(5)
C(22)-C(23)-C(24)-N(5)	178.7(5)
C(9)-N(3)-B(1)-N(5)	138.9(4)
C(16)-N(3)-B(1)-N(5)	-25.7(6)
C(9)-N(3)-B(1)-N(1)	26.2(6)
C(16)-N(3)-B(1)-N(1)	-138.4(4)
C(9)-N(3)-B(1)-Cl(1)	-97.0(5)
C(16)-N(3)-B(1)-Cl(1)	98.4(5)
C(17)-N(5)-B(1)-N(3)	24.6(6)
C(24)-N(5)-B(1)-N(3)	-136.8(4)
C(17)-N(5)-B(1)-N(1)	136.9(4)
C(24)-N(5)-B(1)-N(1)	-24.6(6)
C(17)-N(5)-B(1)-Cl(1)	-99.4(5)
C(24)-N(5)-B(1)-Cl(1)	99.2(5)
C(1)-N(1)-B(1)-N(3)	135.8(4)
C(8)-N(1)-B(1)-N(3)	-25.6(6)

C(1)-N(1)-B(1)-N(5)	23.0(6)
C(8)-N(1)-B(1)-N(5)	-138.4(4)
C(1)-N(1)-B(1)-Cl(1)	-100.9(5)
C(8)-N(1)-B(1)-Cl(1)	97.7(5)

Identification code	Cl-aF ₃ BsubPc		
CCDC deposition number	2051782		
Empirical formula	C24 H9 B Cl F3 N6		
Formula weight	484.63		
Temperature	150(2) K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 12.3458(6) Å	α = 90°.	
	b = 15.1437(7) Å	B=90°.	
	$c = 10.3431(5) \text{ Å}$ γ	v = 90°.	
Volume	1933.76(16) Å ³		
Z	4		
Density (calculated)	1.665 Mg/m ³		
Absorption coefficient	2.271 mm ⁻¹		
F(000)	976		
Crystal size	0.140 x 0.130 x 0.120 mm ³		
Theta range for data collection	5.178 to 67.263°.		
Index ranges	-14<=h<=14, -17<=k<=18, -12<	=l<=12	
Reflections collected	26520		
Independent reflections	1795 [R(int) = 0.0552]		
Completeness to theta = 67.263°	99.3 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7529 and 0.6666		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1795 / 0 / 179		
Goodness-of-fit on F ²	1.100		
Final R indices [I>2sigma(I)]	R1 = 0.0348, $wR2 = 0.0836$	R1 = 0.0348, $wR2 = 0.0836$	
R indices (all data)	R1 = 0.0397, wR2 = 0.0871		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.194 and -0.235 e.Å ⁻³		

Table S14. Crystal data and structure refinement for $Cl-\alpha F_3BsubPc$.

	х	у	Z	U(eq)
Cl(1)	8243(1)	7500	7408(1)	34(1)
C(3)	10417(2)	5440(1)	3174(2)	37(1)
F(1)	11324(1)	5840(1)	3009(1)	39(1)
C(3A)	10417(2)	5440(1)	3174(2)	37(1)
C(6)	8493(2)	4521(1)	3598(2)	39(1)
C(6A)	8493(2)	4521(1)	3598(2)	39(1)
F(2)	7745(3)	4101(3)	3810(4)	42(1)
C(11)	4255(2)	6571(2)	4398(2)	54(1)
C(11A)	4255(2)	6571(2)	4398(2)	54(1)
F(3)	4166(2)	5823(2)	4397(2)	42(1)
N(1)	9980(2)	7500	4107(2)	29(1)
N(2)	8463(1)	6725(1)	4955(1)	28(1)
N(3)	6781(1)	5968(1)	4784(1)	33(1)
N(4)	6840(2)	7500	5286(2)	29(1)
C(1)	9447(1)	6743(1)	4347(2)	28(1)
C(2)	9589(2)	5857(1)	3832(2)	30(1)
C(4)	10311(2)	4585(1)	2748(2)	42(1)
C(5)	9349(2)	4127(1)	2966(2)	42(1)
C(7)	8607(2)	5382(1)	4041(2)	31(1)
C(8)	7865(2)	5984(1)	4688(2)	30(1)
C(9)	6288(2)	6739(1)	4999(2)	33(1)
C(10)	5187(2)	7030(2)	4713(2)	38(1)
C(12)	3332(2)	7042(2)	4090(2)	65(1)
B(1)	8004(2)	7500	5618(3)	28(1)

Table S15. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **Cl-\alphaF₃BsubPc**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-B(1)	1.875(3)
C(3)-F(1)	1.285(2)
C(3)-C(4)	1.375(3)
C(3)-C(2)	1.380(3)
C(3A)-C(4)	1.375(3)
C(3A)-C(2)	1.380(3)
C(3A)-H(3A)	0.9500
C(6)-C(5)	1.379(3)
C(6)-C(7)	1.389(3)
C(6)-H(6)	0.9500
C(6A)-F(2)	1.142(5)
C(6A)-C(5)	1.379(3)
C(6A)-C(7)	1.389(3)
C(11)-F(3)	1.138(3)
C(11)-C(12)	1.381(4)
C(11)-C(10)	1.384(3)
C(11A)-C(12)	1.381(4)
C(11A)-C(10)	1.384(3)
C(11A)-H(11A)	0.9500
N(1)-C(1)	1.345(2)
N(1)-C(1)#1	1.345(2)
N(2)-C(1)	1.368(2)
N(2)-C(8)	1.371(2)
N(2)-B(1)	1.472(2)
N(3)-C(9)	1.336(2)
N(3)-C(8)	1.342(2)
N(4)-C(9)#1	1.371(2)
N(4)-C(9)	1.371(2)
N(4)-B(1)	1.478(3)
C(1)-C(2)	1.454(3)
C(2)-C(7)	1.426(3)
C(4)-C(5)	1.393(3)
C(4)-H(4)	0.9500
C(5)-H(5)	0.9500

Table S16. Bond lengths [Å] and angles [°] for $Cl-\alpha F_3BsubPc$.

_

C(7)-C(8)	1.455(3)
C(9)-C(10)	1.459(3)
C(10)-C(10)#1	1.423(4)
C(12)-C(12)#1	1.388(6)
С(12)-Н(12)	0.9500
F(1)-C(3)-C(4)	118.96(18)
F(1)-C(3)-C(2)	119.74(18)
C(4)-C(3)-C(2)	121.2(2)
C(4)-C(3A)-C(2)	121.2(2)
C(4)-C(3A)-H(3A)	119.4
C(2)-C(3A)-H(3A)	119.4
C(5)-C(6)-C(7)	119.0(2)
C(5)-C(6)-H(6)	120.5
C(7)-C(6)-H(6)	120.5
F(2)-C(6A)-C(5)	118.0(3)
F(2)-C(6A)-C(7)	122.8(3)
C(5)-C(6A)-C(7)	119.0(2)
F(3)-C(11)-C(12)	115.7(2)
F(3)-C(11)-C(10)	125.5(3)
C(12)-C(11)-C(10)	118.8(3)
C(12)-C(11A)-C(10)	118.8(3)
C(12)-C(11A)-H(11A)	120.6
C(10)-C(11A)-H(11A)	120.6
C(1)-N(1)-C(1)#1	117.0(2)
C(1)-N(2)-C(8)	113.64(15)
C(1)-N(2)-B(1)	122.72(16)
C(8)-N(2)-B(1)	122.60(16)
C(9)-N(3)-C(8)	116.81(16)
C(9)#1-N(4)-C(9)	114.4(2)
C(9)#1-N(4)-B(1)	122.23(11)
C(9)-N(4)-B(1)	122.24(11)
N(1)-C(1)-N(2)	122.39(16)
N(1)-C(1)-C(2)	131.29(16)
N(2)-C(1)-C(2)	104.92(15)
C(3A)-C(2)-C(7)	118.29(17)

C(3)-C(2)-C(7)	118.29(17)
C(3A)-C(2)-C(1)	133.74(18)
C(3)-C(2)-C(1)	133.74(18)
C(7)-C(2)-C(1)	107.88(15)
C(3A)-C(4)-C(5)	119.84(19)
C(3)-C(4)-C(5)	119.84(19)
C(3)-C(4)-H(4)	120.1
C(5)-C(4)-H(4)	120.1
C(6A)-C(5)-C(4)	121.02(19)
C(6)-C(5)-C(4)	121.02(19)
C(6)-C(5)-H(5)	119.5
C(4)-C(5)-H(5)	119.5
C(6A)-C(7)-C(2)	120.62(18)
C(6)-C(7)-C(2)	120.62(18)
C(6A)-C(7)-C(8)	132.54(18)
C(6)-C(7)-C(8)	132.54(18)
C(2)-C(7)-C(8)	106.78(15)
N(3)-C(8)-N(2)	122.46(17)
N(3)-C(8)-C(7)	130.51(17)
N(2)-C(8)-C(7)	105.50(15)
N(3)-C(9)-N(4)	122.97(16)
N(3)-C(9)-C(10)	130.93(17)
N(4)-C(9)-C(10)	104.63(17)
C(11)-C(10)-C(10)#1	120.15(16)
C(11A)-C(10)-C(9)	132.1(2)
C(11)-C(10)-C(9)	132.1(2)
C(10)#1-C(10)-C(9)	107.59(11)
C(11A)-C(12)-C(12)#1	121.05(17)
C(11)-C(12)-C(12)#1	121.05(17)
C(11)-C(12)-H(12)	119.5
C(12)#1-C(12)-H(12)	119.5
N(2)#1-B(1)-N(2)	105.6(2)
N(2)#1-B(1)-N(4)	105.45(15)
N(2)-B(1)-N(4)	105.45(15)
N(2)#1-B(1)-Cl(1)	113.53(13)
N(2)-B(1)-Cl(1)	113.53(13)

N(4)-B(1)-Cl(1) 112.51(18)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+3/2,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	46(1)	36(1)	21(1)	0	-2(1)	0
C(3)	36(1)	49(1)	25(1)	-3(1)	-6(1)	10(1)
F(1)	31(1)	52(1)	36(1)	-4(1)	4(1)	-1(1)
C(3A)	36(1)	49(1)	25(1)	-3(1)	-6(1)	10(1)
C(6)	55(1)	37(1)	26(1)	-2(1)	-9(1)	2(1)
C(6A)	55(1)	37(1)	26(1)	-2(1)	-9(1)	2(1)
F(2)	41(2)	36(2)	48(3)	-7(2)	3(2)	-14(2)
C(11)	35(1)	99(2)	28(1)	-6(1)	7(1)	-18(1)
C(11A)	35(1)	99(2)	28(1)	-6(1)	7(1)	-18(1)
F(3)	39(1)	44(1)	44(1)	-5(1)	6(1)	-14(1)
N(1)	28(1)	36(1)	23(1)	0	-4(1)	0
N(2)	30(1)	32(1)	21(1)	-1(1)	0(1)	0(1)
N(3)	35(1)	41(1)	24(1)	-1(1)	3(1)	-6(1)
N(4)	28(1)	38(1)	22(1)	0	2(1)	0
C(1)	28(1)	36(1)	20(1)	-1(1)	-4(1)	1(1)
C(2)	35(1)	36(1)	20(1)	-2(1)	-6(1)	4(1)
C(4)	51(1)	50(1)	25(1)	-8(1)	-8(1)	20(1)
C(5)	61(1)	39(1)	27(1)	-8(1)	-13(1)	11(1)
C(7)	38(1)	35(1)	21(1)	0(1)	-5(1)	2(1)
C(8)	35(1)	34(1)	20(1)	0(1)	-1(1)	-3(1)
C(9)	33(1)	44(1)	21(1)	-1(1)	4(1)	-6(1)
C(10)	29(1)	64(1)	21(1)	-2(1)	6(1)	-3(1)
C(12)	28(1)	134(2)	34(1)	-4(1)	2(1)	-15(1)
B(1)	32(1)	34(2)	20(1)	0	-1(1)	0

Table S17. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for **Cl-\alphaF₃BsubPc**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	у	Z	U(eq)
H(3A)	11072	5750	3014	44
H(6)	7834	4209	3728	47
H(11A)	4250	5944	4393	64
H(4)	10892	4306	2305	50
H(5)	9282	3535	2675	51
H(12)	2686	6733	3876	78

Table S18. Hydrogen coordinates ($x~10^4$) and isotropic displacement parameters (Å²x $10~^3$) for Cl- $\alpha F_3 BsubPc$

 C(1)#1-N(1)-C(1)-N(2)	-7.9(3)
C(1)#1-N(1)-C(1)-C(2)	156.45(13)
C(8)-N(2)-C(1)-N(1)	156.38(17)
B(1)-N(2)-C(1)-N(1)	-12.2(3)
C(8)-N(2)-C(1)-C(2)	-11.50(18)
B(1)-N(2)-C(1)-C(2)	179.89(17)
C(4)-C(3A)-C(2)-C(7)	-1.1(3)
C(4)-C(3A)-C(2)-C(1)	-177.29(18)
F(1)-C(3)-C(2)-C(7)	-177.63(16)
C(4)-C(3)-C(2)-C(7)	-1.1(3)
F(1)-C(3)-C(2)-C(1)	6.2(3)
C(4)-C(3)-C(2)-C(1)	-177.29(18)
N(1)-C(1)-C(2)-C(3A)	16.8(3)
N(2)-C(1)-C(2)-C(3A)	-176.89(18)
N(1)-C(1)-C(2)-C(3)	16.8(3)
N(2)-C(1)-C(2)-C(3)	-176.89(18)
N(1)-C(1)-C(2)-C(7)	-159.75(19)
N(2)-C(1)-C(2)-C(7)	6.60(17)
C(2)-C(3A)-C(4)-C(5)	0.7(3)
F(1)-C(3)-C(4)-C(5)	177.27(17)
C(2)-C(3)-C(4)-C(5)	0.7(3)
F(2)-C(6A)-C(5)-C(4)	-176.0(3)
C(7)-C(6A)-C(5)-C(4)	-1.2(3)
C(7)-C(6)-C(5)-C(4)	-1.2(3)
C(3A)-C(4)-C(5)-C(6A)	0.5(3)
C(3)-C(4)-C(5)-C(6)	0.5(3)
F(2)-C(6A)-C(7)-C(2)	175.3(3)
C(5)-C(6A)-C(7)-C(2)	0.8(3)
F(2)-C(6A)-C(7)-C(8)	-8.0(4)
C(5)-C(6A)-C(7)-C(8)	177.55(18)
C(5)-C(6)-C(7)-C(2)	0.8(3)
C(5)-C(6)-C(7)-C(8)	177.55(18)
C(3A)-C(2)-C(7)-C(6A)	0.3(2)
C(1)-C(2)-C(7)-C(6A)	177.44(15)

Table S19. Torsion angles [°] for $Cl-\alpha F_3BsubPc$.

C(3)-C(2)-C(7)-C(6)	0.3(2)
C(1)-C(2)-C(7)-C(6)	177.44(15)
C(3A)-C(2)-C(7)-C(8)	-177.17(15)
C(3)-C(2)-C(7)-C(8)	-177.17(15)
C(1)-C(2)-C(7)-C(8)	-0.04(18)
C(9)-N(3)-C(8)-N(2)	8.0(2)
C(9)-N(3)-C(8)-C(7)	-155.73(18)
C(1)-N(2)-C(8)-N(3)	-155.70(16)
B(1)-N(2)-C(8)-N(3)	12.9(3)
C(1)-N(2)-C(8)-C(7)	11.55(19)
B(1)-N(2)-C(8)-C(7)	-179.82(16)
C(6A)-C(7)-C(8)-N(3)	-17.8(3)
C(6)-C(7)-C(8)-N(3)	-17.8(3)
C(2)-C(7)-C(8)-N(3)	159.27(18)
C(6A)-C(7)-C(8)-N(2)	176.39(18)
C(6)-C(7)-C(8)-N(2)	176.39(18)
C(2)-C(7)-C(8)-N(2)	-6.55(18)
C(8)-N(3)-C(9)-N(4)	-8.6(3)
C(8)-N(3)-C(9)-C(10)	155.30(18)
C(9)#1-N(4)-C(9)-N(3)	156.44(12)
B(1)-N(4)-C(9)-N(3)	-11.6(3)
C(9)#1-N(4)-C(9)-C(10)	-11.1(3)
B(1)-N(4)-C(9)-C(10)	-179.10(19)
C(12)-C(11A)-C(10)-C(10)#1	-0.2(2)
C(12)-C(11A)-C(10)-C(9)	-175.70(18)
F(3)-C(11)-C(10)-C(10)#1	-178.2(2)
C(12)-C(11)-C(10)-C(10)#1	-0.2(2)
F(3)-C(11)-C(10)-C(9)	6.3(4)
C(12)-C(11)-C(10)-C(9)	-175.70(18)
N(3)-C(9)-C(10)-C(11A)	16.1(3)
N(4)-C(9)-C(10)-C(11A)	-177.83(19)
N(3)-C(9)-C(10)-C(11)	16.1(3)
N(4)-C(9)-C(10)-C(11)	-177.83(19)
N(3)-C(9)-C(10)-C(10)#1	-159.85(16)
N(4)-C(9)-C(10)-C(10)#1	6.27(14)
C(10)-C(11A)-C(12)-C(12)#1	0.2(2)

F(3)-C(11)-C(12)-C(12)#1	178.42(17)
C(10)-C(11)-C(12)-C(12)#1	0.2(2)
C(1)-N(2)-B(1)-N(2)#1	27.7(3)
C(8)-N(2)-B(1)-N(2)#1	-139.86(15)
C(1)-N(2)-B(1)-N(4)	139.11(16)
C(8)-N(2)-B(1)-N(4)	-28.5(2)
C(1)-N(2)-B(1)-Cl(1)	-97.29(18)
C(8)-N(2)-B(1)-Cl(1)	95.1(2)
C(9)#1-N(4)-B(1)-N(2)#1	-27.8(3)
C(9)-N(4)-B(1)-N(2)#1	139.29(17)
C(9)#1-N(4)-B(1)-N(2)	-139.29(17)
C(9)-N(4)-B(1)-N(2)	27.8(3)
C(9)#1-N(4)-B(1)-Cl(1)	96.46(18)
C(9)-N(4)-B(1)-Cl(1)	-96.46(18)

#1 x,-y+3/2,z

Identification code	d1802_a
CCDC deposition number	2051783
Empirical formula	C24 H9 B Cl F3 N6
Formula weight	484.63
Temperature	150(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	Pnma
Unit cell dimensions	$a = 12.6548(9) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 15.1757(11) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 10.1016(7) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	1940.0(2) Å ³
Z	4
Density (calculated)	1.659 Mg/m ³
Absorption coefficient	2.263 mm ⁻¹
F(000)	976
Crystal size	0.180 x 0.170 x 0.160 mm ³
Theta range for data collection	5.260 to 67.100°.
Index ranges	-14<=h<=15, -14<=k<=17, -12<=l<=11
Reflections collected	9460
Independent reflections	1776 [R(int) = 0.0425]
Completeness to theta = 67.100°	98.2 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7529 and 0.6229
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1776 / 0 / 179
Goodness-of-fit on F ²	1.173
Final R indices [I>2sigma(I)]	R1 = 0.0520, $wR2 = 0.1198$
R indices (all data)	R1 = 0.0577, $wR2 = 0.1223$
Extinction coefficient	n/a
Largest diff. peak and hole	0.453 and -0.478 e.Å ⁻³

Table S20. Crystal data and structure refinement for Cl-βF₃BsubPc.

	x	у	Z	U(eq)
Cl(1)	7991(1)	7500	7468(1)	41(1)
F(1)	10856(2)	4223(2)	2244(3)	45(1)
C(4)	10118(3)	4619(2)	2855(3)	36(1)
C(4A)	10118(3)	4619(2)	2855(3)	36(1)
F(2)	9303(3)	3269(3)	2755(4)	36(1)
C(5)	9195(3)	4143(2)	3060(3)	35(1)
C(5A)	9195(3)	4143(2)	3060(3)	35(1)
C(12)	3261(2)	7039(3)	3921(3)	42(1)
C(12A)	3261(2)	7039(3)	3921(3)	42(1)
F(3)	2380(3)	6654(3)	3520(4)	58(1)
N(1)	9738(3)	7500	4177(3)	28(1)
N(2)	8233(2)	6727(2)	4985(2)	28(1)
N(3)	6598(2)	5972(2)	4741(2)	32(1)
N(4)	6643(3)	7500	5261(3)	29(1)
C(1)	9208(2)	6748(2)	4406(3)	27(1)
C(2)	9373(2)	5863(2)	3891(3)	28(1)
C(3)	10229(2)	5480(2)	3252(3)	30(1)
C(6)	8320(2)	4520(2)	3639(3)	33(1)
C(7)	8412(2)	5388(2)	4070(3)	29(1)
C(8)	7664(2)	5985(2)	4687(3)	30(1)
C(9)	6106(2)	6746(2)	4944(3)	30(1)
C(10)	5041(2)	7031(2)	4622(3)	33(1)
C(11)	4135(2)	6557(3)	4268(3)	36(1)
B(1)	7767(4)	7500	5647(5)	28(1)

Table S21. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **Cl-\betaF₃BsubPc**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Cl(1)-B(1)	1.862(5)
F(1)-C(4)	1.270(4)
C(4)-C(3)	1.373(4)
C(4)-C(5)	1.389(5)
C(4A)-C(3)	1.373(4)
C(4A)-C(5A)	1.389(5)
C(4A)-H(4A)	0.9500
F(2)-C(5)	1.369(5)
C(5)-C(6)	1.377(4)
C(5A)-C(6)	1.377(4)
C(5A)-H(5A)	0.9500
C(12)-C(11)	1.373(5)
C(12)-C(12)#1	1.398(8)
С(12)-Н(12)	0.9500
C(12A)-F(3)	1.323(5)
C(12A)-C(11)	1.373(5)
N(1)-C(1)#1	1.343(3)
N(1)-C(1)	1.343(3)
N(2)-C(1)	1.366(4)
N(2)-C(8)	1.371(4)
N(2)-B(1)	1.474(4)
N(3)-C(9)	1.344(4)
N(3)-C(8)	1.350(4)
N(4)-C(9)#1	1.369(3)
N(4)-C(9)	1.369(3)
N(4)-B(1)	1.475(6)
C(1)-C(2)	1.456(4)
C(2)-C(3)	1.389(4)
C(2)-C(7)	1.424(4)
C(3)-H(3A)	0.9500
C(6)-C(7)	1.393(4)
C(6)-H(6A)	0.9500
C(7)-C(8)	1.450(4)
C(9)-C(10)	1.453(4)

Table S22. Bond lengths [Å] and angles $[\circ]$ for Cl- β F₃BsubPc.

1.399(4)
1.424(7)
0.9500
121.2(3)
116.4(3)
122.5(3)
122.5(3)
118.8
118.8
125.4(3)
112.7(3)
121.6(3)
121.6(3)
119.2
119.2
122.3(2)
118.9
118.9
121.4(4)
116.2(3)
113.6(2)
122.5(3)
122.9(3)
117.2(3)
113.5(3)
122.70(18)
122.70(18)
123.1(3)
130.6(3)
105.1(2)
120.9(3)
131.6(3)
107.4(3)
117.0(3)
117.0(3)

C(4)-C(3)-H(3A)	121.5
C(2)-C(3)-H(3A)	121.5
C(5A)-C(6)-C(7)	117.3(3)
C(5)-C(6)-C(7)	117.3(3)
C(5)-C(6)-H(6A)	121.3
C(7)-C(6)-H(6A)	121.3
C(6)-C(7)-C(2)	120.7(3)
C(6)-C(7)-C(8)	132.1(3)
C(2)-C(7)-C(8)	107.2(3)
N(3)-C(8)-N(2)	121.8(3)
N(3)-C(8)-C(7)	131.4(3)
N(2)-C(8)-C(7)	105.3(2)
N(3)-C(9)-N(4)	122.4(3)
N(3)-C(9)-C(10)	130.9(3)
N(4)-C(9)-C(10)	105.3(3)
C(11)-C(10)-C(10)#1	120.9(2)
C(11)-C(10)-C(9)	131.6(3)
C(10)#1-C(10)-C(9)	107.33(18)
C(12A)-C(11)-C(10)	116.8(3)
C(12)-C(11)-C(10)	116.8(3)
С(12)-С(11)-Н(11)	121.6
С(10)-С(11)-Н(11)	121.6
N(2)-B(1)-N(2)#1	105.6(4)
N(2)-B(1)-N(4)	105.4(2)
N(2)#1-B(1)-N(4)	105.4(2)
N(2)-B(1)-Cl(1)	112.8(2)
N(2)#1-B(1)-Cl(1)	112.8(2)
N(4)-B(1)-Cl(1)	114.1(3)

#1 x,-y+3/2,z

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Cl(1)	44(1)	50(1)	27(1)	0	-4(1)	0
F(1)	34(2)	40(2)	60(2)	-6(2)	11(2)	9(2)
C(4)	46(2)	36(2)	26(2)	-1(1)	-1(1)	6(2)
C(4A)	46(2)	36(2)	26(2)	-1(1)	-1(1)	6(2)
F(2)	38(2)	28(2)	41(3)	-12(2)	-2(2)	-2(2)
C(5)	51(2)	26(2)	28(2)	-3(1)	-4(1)	4(2)
C(5A)	51(2)	26(2)	28(2)	-3(1)	-4(1)	4(2)
C(12)	25(2)	69(2)	32(2)	-3(2)	3(1)	-5(2)
C(12A)	25(2)	69(2)	32(2)	-3(2)	3(1)	-5(2)
F(3)	25(2)	79(3)	69(3)	-16(3)	-1(2)	-13(2)
N(1)	29(2)	29(2)	25(2)	0	-6(1)	0
N(2)	29(1)	29(1)	25(1)	-1(1)	-3(1)	-2(1)
N(3)	31(1)	39(2)	25(1)	-1(1)	0(1)	-5(1)
N(4)	29(2)	36(2)	21(2)	0	-2(1)	0
C(1)	26(1)	30(2)	24(1)	2(1)	-5(1)	-2(1)
C(2)	31(2)	31(2)	22(1)	2(1)	-7(1)	1(1)
C(3)	31(2)	32(2)	27(1)	4(1)	-4(1)	1(1)
C(6)	39(2)	34(2)	26(1)	-2(1)	-5(1)	-5(1)
C(7)	33(2)	32(2)	21(1)	1(1)	-4(1)	-2(1)
C(8)	35(2)	34(2)	21(1)	2(1)	-3(1)	-5(1)
C(9)	34(2)	35(2)	20(1)	-1(1)	1(1)	-4(1)
C(10)	30(2)	48(2)	20(1)	0(1)	3(1)	1(1)
C(11)	30(2)	53(2)	26(1)	-6(2)	6(1)	-4(2)
B(1)	31(2)	31(3)	22(2)	0	-4(2)	0

Table S23. Anisotropic displacement parameters (Å²x 10³) for **Cl-\betaF₃BsubPc**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	х	У	Z	U(eq)
H(4A)	10695	4339	2425	43
H(5A)	9166	3543	2794	42
H(12)	2634	6737	3672	51
H(3A)	10862	5799	3095	36
H(6A)	7679	4201	3740	40
H(11)	4126	5931	4267	44

Table S24. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **Cl-** β **F**₃**BsubPc**.

F(1)-C(4)-C(5)-F(2)	10.2(5)
C(3)-C(4)-C(5)-F(2)	-171.6(3)
F(1)-C(4)-C(5)-C(6)	-176.0(3)
C(3)-C(4)-C(5)-C(6)	2.1(5)
C(3)-C(4A)-C(5A)-C(6)	2.1(5)
C(1)#1-N(1)-C(1)-N(2)	-7.5(5)
C(1)#1-N(1)-C(1)-C(2)	157.4(2)
C(8)-N(2)-C(1)-N(1)	156.4(3)
B(1)-N(2)-C(1)-N(1)	-12.4(4)
C(8)-N(2)-C(1)-C(2)	-11.9(3)
B(1)-N(2)-C(1)-C(2)	179.4(3)
N(1)-C(1)-C(2)-C(3)	15.8(5)
N(2)-C(1)-C(2)-C(3)	-177.2(3)
N(1)-C(1)-C(2)-C(7)	-160.4(3)
N(2)-C(1)-C(2)-C(7)	6.6(3)
C(5A)-C(4A)-C(3)-C(2)	0.8(4)
F(1)-C(4)-C(3)-C(2)	178.8(3)
C(5)-C(4)-C(3)-C(2)	0.8(4)
C(7)-C(2)-C(3)-C(4A)	-2.6(4)
C(1)-C(2)-C(3)-C(4A)	-178.4(3)
C(7)-C(2)-C(3)-C(4)	-2.6(4)
C(1)-C(2)-C(3)-C(4)	-178.4(3)
C(4A)-C(5A)-C(6)-C(7)	-2.9(4)
F(2)-C(5)-C(6)-C(7)	170.0(3)
C(4)-C(5)-C(6)-C(7)	-2.9(4)
C(5A)-C(6)-C(7)-C(2)	1.1(4)
C(5)-C(6)-C(7)-C(2)	1.1(4)
C(5A)-C(6)-C(7)-C(8)	178.7(3)
C(5)-C(6)-C(7)-C(8)	178.7(3)
C(3)-C(2)-C(7)-C(6)	1.7(4)
C(1)-C(2)-C(7)-C(6)	178.4(2)
C(3)-C(2)-C(7)-C(8)	-176.4(2)
C(1)-C(2)-C(7)-C(8)	0.3(3)
C(9)-N(3)-C(8)-N(2)	7.9(4)

Table S25. Torsion angles [°] for Cl-βF₃BsubPc.

C(9)-N(3)-C(8)-C(7)	-156.2(3)
C(1)-N(2)-C(8)-N(3)	-155.6(3)
B(1)-N(2)-C(8)-N(3)	13.1(4)
C(1)-N(2)-C(8)-C(7)	12.1(3)
B(1)-N(2)-C(8)-C(7)	-179.2(3)
C(6)-C(7)-C(8)-N(3)	-18.9(5)
C(2)-C(7)-C(8)-N(3)	158.9(3)
C(6)-C(7)-C(8)-N(2)	175.1(3)
C(2)-C(7)-C(8)-N(2)	-7.1(3)
C(8)-N(3)-C(9)-N(4)	-8.6(4)
C(8)-N(3)-C(9)-C(10)	156.2(3)
C(9)#1-N(4)-C(9)-N(3)	156.6(2)
B(1)-N(4)-C(9)-N(3)	-11.6(5)
C(9)#1-N(4)-C(9)-C(10)	-11.6(4)
B(1)-N(4)-C(9)-C(10)	-179.8(3)
N(3)-C(9)-C(10)-C(11)	15.5(5)
N(4)-C(9)-C(10)-C(11)	-177.8(3)
N(3)-C(9)-C(10)-C(10)#1	-160.1(3)
N(4)-C(9)-C(10)-C(10)#1	6.6(2)
F(3)-C(12A)-C(11)-C(10)	177.3(3)
C(12)#1-C(12)-C(11)-C(10)	-0.2(3)
C(10)#1-C(10)-C(11)-C(12A)	0.2(3)
C(9)-C(10)-C(11)-C(12A)	-174.9(3)
C(10)#1-C(10)-C(11)-C(12)	0.2(3)
C(9)-C(10)-C(11)-C(12)	-174.9(3)
C(1)-N(2)-B(1)-N(2)#1	27.8(5)
C(8)-N(2)-B(1)-N(2)#1	-140.0(2)
C(1)-N(2)-B(1)-N(4)	139.1(3)
C(8)-N(2)-B(1)-N(4)	-28.6(4)
C(1)-N(2)-B(1)-Cl(1)	-95.8(3)
C(8)-N(2)-B(1)-Cl(1)	96.5(3)
C(9)#1-N(4)-B(1)-N(2)	-139.3(3)
C(9)-N(4)-B(1)-N(2)	27.9(4)
C(9)#1-N(4)-B(1)-N(2)#1	-27.9(4)
C(9)-N(4)-B(1)-N(2)#1	139.3(3)
C(9)#1-N(4)-B(1)-Cl(1)	96.4(3)

#1 x,-y+3/2,z