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Table S1. Calculated equilibrium lattice constant (a, Å), bond length of Fe-I ( , Å), angle of Fe Il 

the I-Fe-I (α, °), magnetic moment of Fe (M, μB), cohesive energy (Ecoh, eV/atom), and exchange 

energy with DFT+U and HSE functional, respectively (Eexc= EAFM - EFM, meV).

a Fe Il  α M Ecoh Eexc (DFT+U) Eexc (HSE)

Fe2I2 3.81 2.68 90.34 ~3 3.01 516 478

Figure S1. (a) Electron localization function (ELF); ELF = 1.0 (red) and 0.0 (blue) indicate 

accumulated and vanishing electron density, respectively. (b) Harmonic phonon analysis of SL 

Fe2I2. (c) Snapshot of SL Fe2I2 at the end of MD simulation at 500 K after 10 ps. (d) Changes of 

the total energy with the trajectory time, obtained from MD simulations of SL Fe2I2 at 500 K.
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Figure S2. (a) Calculated cohesive energy (Ecoh, eV/atom) for a wide range of 2D FexIy binary 

materials where the insets show their corresponding crystal structures. The 1T’-FeI2 and P-Fe2I2 

structures, denoted by the horizontal black arrows, undergo structural phase transitions to the 1T-

FeI2 and S-Fe2I2 structures, respectively, after geometry relaxation. (b) Calculated phonon 

dispersion curves of the proposed 2H-FeI2. (c) Minority (Orange line) and majority (blue line) 

spin-resolved band structure of the 2H-FeI2 layer. (d) and (e) Phonon dispersion curves of the 

proposed G-FeI, and Si-FeI layers, respectively. 

In order to determine the ground state of the 2D FexIy binary materials, we have constructed seven 

additional possible configurations based on the conventional prototypes of 2D material family. As 

shown in Figure S2, these additional 2D FexIy crystals include the graphene-like FeI (denoted as G-

FeI), silicene-like FeI (Si-FeI), phosphorene-like FeI (P-Fe2I2), 1T-MoS2-like FeI2 (1T-FeI2), CrI3-

like FeI3 (C-FeI3), 1T’-WTe2-like FeI2 (1T’-FeI2), and 2H-MoS2-like FeI2 (2H-FeI2). Overall, the 

calculations reveal several important results: (1) the square Fe2I2 single-layer (SL) (shown in this 

work, denoted as S-Fe2I2) is indeed the ground state with the highest Ecoh. (2) Similar to the 

reported 1T-FeI2 [1-3], the 2H-FeI2 SL shows an insulating electronic behavior and in-plane 



magnetic orientation (MCA = -1.98 meV) with a dynamically stable crystal structure. (3) The 2D 

G-FeI and Si-FeI hexagonal structures are not stable because of the emergence of imaginary 

frequencies in the phonon spectra.

Figure S3. The magnetic moments variation of the Fe atom as functions of temperature by means 

of Monte Carlo simulations on the basis of 2D Heisenberg Hamiltonian model.

Figure S4. The variation of MCA and orbital moment anisotropy verse strain effect for Fe2I2 SL.



Figure S5. The SOC-induced energy gap of the 2D Fe2I2 crystal as a function of biaxial strain 

effect.

Figure S6. Band structure of the edges of Fe2I2 ribbon as a function of in-plane lattice constants 

(a) 3.992 Å (4.65%), (b) 3.924 Å (3%), (c) 3.696 Å (-3%) and (d) 3.620 Å (-5%) with robust edge 

states, denoted by green, connecting the 2D valence and conduction bands.



Figure S7. The proposed Fe2I2/BTO junctions consisting of Fe2I2 SL on five unit cells of BaTiO3. 

Blue, orange, green, gray and red spheres denote the Fe, I, Ba, Ti, and O atoms, respectively. The 

gray arrows show the polarization directions.

Figure S8. The Fe2I2 layer-resolved band structure for the three different Fe2I2/BTO 

configurations, i.e.  (left panel),  (central panel), and  (right panel, respectively).GC
MC

GC



The SOC energy difference is defined as , where( ) / 2SOC SOC SOCE E E   
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angular momentum orbitals, ,  is the spin index, is the atomic SOC strength obtained from    Il

the spherical part of the effective potential, V(r), within the PAW sphere, is the density ,
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low-energy effective Hamiltonian:

In the absence of SOC, the 2D Fe2I2 SL hosts two pair of Dirac points along the kx and ky axes, 

locating at (±k0, 0) and (0, ±k0), respectively. We have constructed the low-energy effective  k p

Hamiltonian to describe the Dirac cones, for instance, for the ones denoted as D1 (D2) at (k0, 0) 

((0, k0)). At D1 (D2), the two relevant bands forming the Dirac point are labeled as and . 1 2

Under basis , the Hamiltonian can be expressed as1 2( , )T  

1 3 1 1 2 2( , ) ( )D x y x yH p p p p     

 ,                                (Eq. S1)
2 3 1 1 2 2( , ) ( )D x y y xH p p p p     

where are the Pauli Matrices and are real constants.1,2,3 1,2
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