Biogenic Fluorescent Protein-Silk Fibroin Phosphors for Highly Performing Light-Emitting Diodes

Verónica Fernández-Luna, Juan P. Fernández-Blázquez, Miguel A. Monclús, Francisco Javier Rojo, Rafael Daza, Daniel SanchezdeAlcazar, Aitziber L. Cortajarena, and Rubén D. Costa

Figure S1. AFM topography images (top) and optical microscopy (x10) pictures (bottom) of films with 3% wt. SF (left), 6% (center) and 9% (right).

Figure S2. Color diagram representing the x/y CIE color coordinates of: i) fresh SF films (circle) with 3 (grey), 6 (orange), 9 (blue) wt. % of SF, ii) SF-films after thermal-(triangle) and photo-degradation (diamond) stress, and iii) fresh (circle), heated (triangle), and irradiated (diamond) FP-SF films (green).

Figure S4. Representative load-displacement curves corresponding to cyclic nanoindentation tests performed using a maximum load of 12 mN on fresh 3 wt.% SF-film (red), FP-SF fresh (blue), heated SF-films (black), and irradiated SF-films (green).

Journal Name

ARTICLE

Figure S6. Top: Optical microscope (x10) images of fresh (left), heated (center), and irradiated (right) FP-SF (top) and SF (bottom) films.

Figure S7. AFM topography pictures of heated (left) and irradiated (right) FP-SF filters.

Figure S8. Electroluminescence spectra of a bare LED chip (left) and that covered with a SF-film (right) upon increasing the applied current.

Figure S9. Thermal stability of FP-polymer bio-phosphor at a constant temperature (50 °C) for 24 h and after cooling, monitoring the emission intensity (left), and emission band shape (right) upon excitation with a blue LED (450 nm) for 5 s every 10 min.

Figure S10. Emission spectra at excitation wavelengths of 375 nm (left) and 490 nm (right) of fresh (black) and after isothermal treatment (orange) FP-SF films. Please notice that the tail of the excitation lamp is noted (400 nm) in the left graph.

Figure S11. Emission spectra at excitation wavelengths of 375 nm of FP-SF films used in remote Bio-HLEDs.

Table S1. Summary of the state-of-the-art in Bio-HLEDs

Biogenic component	LED structure	Driving mode	x/y CIE color coordinates	CRI	CCT (K)	Lifetime (h)	Efficiency (Im/W)	Ref			
			Biogenic matrix								
BSM	411 LED/BMS/RGB dyes	3.0 V	0.32/0.32	-	-	-	-	1			
BSA	365 LED /BSA/C460/F/ROX/EDC	-	0.28/0.31	-	5300	106	-	2			
Cellulose	450 LED/QDs-cellulose	3.0 V	0.32/0.32	-	-	-	-	3			
Starch	450 LED/starch/g-CDs	2.8 V	0.26/0.33	-	-	-	-	4			
Starch	450 LED/starch/g-CDs	2.8 V	0.23/0.27	-	-	-	-	4			
Cellulose	390 LED/afGQDs	4.1 V	0.33/0.37	-	-	100	-	5			
Cellulose nanofibre	410 LED/fGQDs@CNF- clay/yellow/orange	20 mA	0.33/0.37	-	-	-	36.1	5			
Cellulose nanofiber	410 LED/fGQDs@CNF- clay/green/orange	20 mA	0.30/0.42	-	-	-	35.4	5			
Nanocellulose	UV-LED/crystalline nanocellulose/porcine gastric mucin/RG dyes	-	0.40/0.42	84.4	3543 - 4150	-	-	6			
DNA	UV-LED/DNA-curcumin	10 mA	0.39/0.56	-	-	-	1.6	7			
Bio-inspired Jellyfish-like	SMD LED Lamp/PAN- NFs/PDMS	2.5 V	0.34/0.35	-	-	-	29.7	8			
Cassava	UV- LED/Coumarin/curcumi n/sulforhodamine/cassa va-based biopolymerfilm	10 mA	0.33/0.32	-	-	-	-	9			
Biogenic emitter											

FP	440 LED/ PEO/eGFP/mCherry	10 mA	0.32/0.33	80	4500-6000	>100	55	10
FP	395 LED/ PEO/BFP/GFP/mCherry	65 mA	0.35/0.35	70-60	4500-6000	-	3.4	10
FP	450 LED/microstructured PEO/eGFP/mCherry	20 mA	0.33/0.33	-	5500	>60	6	11
FP	450 LED/eGFP/mCherry	-	-		8440	-	248	12
FP	Blue LED/eGFP/mCherry	-	-	-	-	-	-	13
FP	450 LED/eGFP (on chip)	200 mA	-	-	-	1 min	-	14
FP	450 LED/eGFP (on chip)	30 mA	-	-	-	100	-	14
FP	450 LED chip/eGFP (remote)	200 mA	-	-	-	>300	-	14
Fused FP	395 LED/trimer BFP@GFP@mCherry	10 mA	0.37/0.38	91	4300	>400	15	15
FP	440 LED chip/eGFP-AA	200 mA	0.30/0.65	-	-	2	130	16
Protein-Au NCs	380 LED blue/redAuNCs (prepared/measured in oxygen conditions)	30 mA	0.31/0.29	-	6840	10	3	17
Protein-Au NCs	380 LED/blue/redAuNCs (prepared in oxygen/measured in inert conditions)	30 mA	0.34/0.31	-	4803	221	3	17
Protein-Au NCs	380 LED/blue/redAuNCs (prepared/measured in inert conditions)	30 mA	0.32/0.33	-	6377	800	3	17
R-PE	405 LED/R-PE proteins/QD@ZIF-8 film	-	0.34/0.34	85	4955	-	-	18
R-PE	UV-LED/R-PE@HSBW1	14 mA/cm²	0.33/0.34	85	5740	-	81	19

References

[1] N. Hendler, B. Belgorodsky, E. D. Mentovich, M. Gozin, S. Richter, Adv. Mater. 2011, 23, 4261.

[2] K. Benson, A. Ghimire, A. Pattammattel, C. V. Kumar, Adv. Funct. Mater. 2017, 27, 1702955.

[3] D. Zhou, H. Zou, M. Liu, K. Zhang, Y. Sheng, J. Cui, H. Zhang, B. Yang, ACS Appl. Mater. Interfaces 2015, 7, 15830.

[4] H. Tetsuka, A. Nagoya, R. Asahi, J. Mater. Chem. C 2015, 3, 3536.

[5] M. Sun, S. Qu, Z. Hao, W. Ji, P. Jing, H. Zhang, J. Zhao, D. Shen, Nanoscale, 2014, 6, 13076.

[6] J. Gotta, T. Ben Shalom, S. Aslanoglou, A. Cifuentes-Rius and N. H. Voelcker, *Adv. Funct. Mater.* 2018, **28**, 1706967.

Journal Name

[8] S. An, H. S. Jo, Y. I. Kim, K. Y. Song, M.-W. Kim, K. B. Lee, A. L. Yarin, S. S. Yoon, Nanoscale 2017, 9, 9139.

[9] S. Pratap, R. Mallem, K. Im, J. Lee, C. Park and P. Bathalavaram, Opti. Mater. 2019, 95, 109270.

[10] M. D. Weber, L. Niklaus, M. Pröschel, P. B. Coto, U. Sonnewald, R. D. Costa, *Adv. Mater.* 2015, **27**, 5493.

[11] L. Niklaus, S. Tansaz, H. Dakhil, K. T. Weber, M. Pröschel, M. Lang, M. Kostrzewa, P. B. Coto, R. Detsch,
U. Sonnewald, A. Wierschem, A. R. Boccaccini, R. D. Costa, *Adv. Funct. Mater.* 2017, 27, 1601792.

[12] D. A. Press, R. Melikov, D. Conkar, E. N. Firat-Karalar, S. Nizamoglu, Adv. Photonics, 2016, NoTu2D.3.

[13] S. Nizamoglu, SDÜ Fen Bilim. Enstitüsü Derg., 2016, 20, 490.

[14] V. Fernández-luna, D. S. Alcázar, J. P. Fernández-Blázquez, A. L. Cortajarena, P. B. Coto and R. D. Costa, *Adv. Funct. Mater.* 2019, **29**, 1904356.

[15] C. F. Aguiño, M. Lang, V. Fernández-Luna, M. Pröschel, U. Sonnewald, P. B. Coto, R. D. Costa, ACS Omega 2018, **3**, 15829.

[16] A. Espasa, M. Lang, C. F. Aguiño, D. Sanchez-dealcazar, J. P. Fernández-blázquez, U. Sonnewald, A. L. Cortajarena, P. B. Coto, R. D. Costa, *Nat. Commun.* 2020, **11**, 1–10.

[17] A. Aires, V. Fernández-luna, J. Fernandez-cestau, R. D. Costa, A. L. Cortajarena, *Nano Letters* 2020, DOI:10.1021/acs.nanolett.0c00324

[18] X. Wang, Y. Guo, Z. Li, W. Ying, D. Chen, Z. Deng, X. Peng, RSC Adv. 2019, 9, 9777.

[19] X. Wang, Z. Li, W. Ying, D. Chen, P. Li, Z. Deng, X. Peng, J. Mater. Chem. C, 2020, 8, 240.