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Theoretical Details

Structure representation via concatenated latent spaces

We use generative neural networks with complex architecture known as variational autoencoders1 
(VAEs) to convert the sparse representation of chemical structures (stoichiometric composition and 
XRD pattern) to denser one, i.e., with lower dimension. VAE consists of two neural networks: encoder 
and decoder. Encoder Q(z|x) takes input data x (normalized stoichiometric composition or XRD 
pattern) and returns its dense representation z (point in the “latent space”). For clarity, initial 100-
dimensional vectors of stoichiometric composition are converted to 24-dimensional latent space; 1601-
dimensional vectors of XRD patterns are converted to 64-dimensional latent space. The decoder takes 
z as input and returns image x* of initial data x. Intrinsic parameters of encoder and decoder (its weights 
and biases) are optimized to reproduce initial data by its image. “Training” VAEs is aimed at 
minimizing loss function represented for single structure as follows:

𝑙𝑖 =‒ 𝐸[log 𝐷(𝑥𝑖|𝑧)] + 𝐷𝐾𝐿[𝑄(𝑧|𝑥𝑖)||𝑝(𝑧)]

where  — expected negative log-likelihood,  — the Kullback-Leibler divergence between the 𝐸 𝐷𝐾𝐿

encoder’s distribution Q(z|x) and standard normal distribution p(z). Total loss for a set of structures 
equals to the sum of absolute values of li.  is a “reconstruction loss” forcing the decoded data x* to 𝐸

match initial inputs x. Value of  reflects the similarity of encoder’s distribution to normal 𝐷𝐾𝐿

distribution p(z). This regularization term distinguishes VAEs from “vanilla” autoencoders that are not 
suitable for sampling new points from latent space.

Architectures of compositional and structural VAEs implemented with Keras package are presented 
in Fig. S1. The architecture of structural VAE was inspired by the structure of variational convolutional 
autoencoder for stellar spectra analysis (from astroNN package2). Hyperparameters of both models 
were optimized with the Hyperopt framework3. Permissible ranges and optimal values are presented 
in Table S3.

To verify trained VAEs, we inspected a set of structures from the Materials Project database that were 
not using during VAEs training. 

Target property optimization via concatenated latent spaces

Taken into account all previous observations (pairs (xi, yi), where xi is a point in latent space and yi is 
a corresponding value of an optimized variable), sequential model-based optimization (SMBO) 
methods provide new points in configurational space that potentially satisfy target functionality, i.e. 
minimum/maximum value of an optimized variable4. Tree-structured Parzen estimator (TPE) strategy 
models p(x|y) and p(y), whereas most other SMBO algorithms, e.g., Gaussian-process (GP) based, 
model p(y|x) directly. Tree-based SMBO methods often outperform not only random search but also 
GP based methods, especially if search space contains many conditional/categorical hyperparameters. 
Moreover, the runtime of each iteration of TPE optimization can scale linearly in configurational 
space, whereas the runtime of each iteration of GP optimization scales cubically4.

The hyperparameter space is described using uniform distributed variables while original latent 
variables are normally distributed. TPE approach suggests the following replacement: uniform → 
truncated Gaussian mixture. The posterior distribution  in modified configuration space defines 𝑝(𝑥|𝑦)
through two non-parametric densities as follows:



𝑝(𝑥|𝑦) = { 𝑙(𝑥),   𝑖𝑓  𝑦 < 𝑦 ∗

𝑔(𝑥),   𝑖𝑓  𝑦 ≥ 𝑦 ∗ �
where  is usually defined as a fixed quantile of the observed losses. TPE optimization algorithm 𝑦 ∗

may be summarized as a two-step iterative procedure:

 Evaluate the loss function in the point of the configuration space where ratio  reaches its 

𝑙(𝑥)
𝑔(𝑥)

maximum;

 (Re-)calculate  and  densities.𝑙(𝑥) 𝑔(𝑥)

We illustrate the optimization performance of two above-mentioned Bayesian approaches in 
comparison with a random search on several 2-dimensional artificial test functions. TPE and GP 
algorithms are implemented with the Hyperopt framework3 and the scikit-optimize library ( 
https://doi.org/10.5281/zenodo.1207017), correspondingly. Benchmarking results are presented in 
Fig. S8. While both optimization strategies demonstrate comparable convergence, TPE seems 
preferable due to its better scalability.



Fig. S1. Architectures of compositional (left) and structural (right) VAEs.



Fig. S2. Structural VAE verification. Minor set of structures from the Materials Project database was 
not used to train VAEs. We test the validity of trained models via visual inspection of original XRD 
spectra and its decoded image.



Fig. S3. Compositional VAE verification. Minor set of structures from the Materials Project database 
was not used to train VAEs. We test the validity of trained models via visual inspection of original 
compositions and its decoded image.



Fig. S4. Two-dimensional t-distributed stochastic neighbour embedding (t-SNE) projection of 
compositional latent (sub)space variables of structures from the Materials Project database. Structures 
contained corresponding element are marked in red. All considered elements (except for oxygen) form 
several distinct clusters that correspond to different chemical classes of compounds.



Fig. S5. Two-dimensional t-distributed stochastic neighbour embedding (t-SNE) projection of 
structural latent (sub)space variables of structures from the Materials Project database. All structures 
are marked in accordance with its crystal symmetry. Structures with trigonal, hexagonal, and cubic 
crystal symmetry form well-resolved clusters. Structures with triclinic, monoclinic, orthorhombic, and 
tetragonal crystal symmetry form poorly separable groups (at least in two-dimensional projection). As 
in the case of chemical latent (sub)space (structures contained specific chemical element), each of 
crystal symmetry forms several distinct clusters due to the structural diversity of corresponding space 
groups.



Fig. S6. Predicted vs. calculated values of physicochemical properties used to verify proposed 
structure representation (regression tasks).



Fig. S7.Predicted vs. calculated values of physicochemical properties used to verify proposed structure 
representation (classification tasks).





Fig. S8. Progress of optimization runs for 2-dimensional test functions with three strategies: random 
search, Gaussian process, and Tree-Structured Parzen Estimators.



Fig. S9. Performance metrics of filters. (A) The confusion matrix for the space group classification. 
Since the number of classes exceeds two hundred, this representation looks sparse and 
unrepresentative. (B) The confusion matrix for the crystal system classification. We do not build a 
separate predictive model, output signals of the space group classifier are summed up following which 
crystal system a given space group belongs to. The average values of accuracy for space groups and 
crystal system predictions are 0.54 and 0.72, respectively. These values are significantly lower than 
those presented in the original study5. On the other hand, a similar accuracy of around 54% was 
obtained on experimental data6. The presented performance metrics refer to diffraction patterns that 
have passed through a convolutional autoencoder used to construct the structural subspace. (C) 
Receiver operating characteristic (ROC) curve and (D) confusion matrix for stability classifier. The 
model shows excellent predictive power with the area under the ROC curve at 0.98 and accuracy at 
0.96 on an external test set.



Fig. S10. The distributions of “time series” characteristics for structures from the Materials Project 
Database.



Table S1. Ranges and optimal values of hyperparameters used to build best-performance models.

Model Hyperparameter Distribution 
type Range Optimal 

value

Structural VAE filters_1 integers 8…16 16

filters_2 integers 16…32 17

filters_3 integers 32…64 37

kernel_size integers 2…5 4

pool_size integers 2…5 2

units_1 integers 512…1024 693

units_2 integers 256…512 403

dropout uniform [0, 0.06] 2.04×10–2

regularizer_l1 log-uniform [10–7, 3×10–5] 1.46×10–6

regularizer_l2 log-uniform [10–7, 3×10–5] 6.42×10–7

kernel_initializer categories [lecun_normal, he_normal, 
he_uniform] lecun_normal

activation categories [tanh, selu, elu, relu] selu

optimizer categories
[sgd, rmsprop, adagrad, 
adadelta, adam, adamax, 
nadam]

adamax

Compositional 
VAE units_1 integers 48…96 95

units_2 integers 20…64 50

dropout uniform [0, 0.1] 4.49×10–6

regularizer_l1 log-uniform [10–7, 3×10–5] 1.94×10–7

regularizer_l2 log-uniform [10–7, 3×10–5] 1.09×10–6

kernel_initializer categories [lecun_normal, he_normal, 
he_uniform] he_normal

activation categories [tanh, selu, elu, relu] selu

optimizer categories
[sgd, rmsprop, adagrad, 
adadelta, adam, adamax, 
nadam]

nadam



Table S2. Ranges and optimal values of hyperparameters used to build best-performance models.

Model Hyperparameter Distribution type Range Optimal 
value

Space group classifier filters_1 integers 8…128 104

filters_2 integers 8…128 51

filters_3 integers 8…128 117

strides_1 integers 1…3 2

strides_2 integers 1…3 1

strides_3 integers 1…3 2

kernel_size_1 integers 4…80 34

kernel_size_2 integers 8…40 37

kernel_size_3 integers 8…20 13

units_1 integers 256…2500 2047

units_2 integers 128…1600 943

pool_size integers 2…4 3

conv_dropout uniform [0, 0.85] 0.498

conn_dropout uniform [0, 0.75] 0.675

kernel_initializer categories
[lecun_normal, 
he_normal]

lecun_normal

activation categories
[tanh, selu, elu, 
relu]

relu

optimizer categories
[adagrad, 
adadelta, adam, 
adamax]

adamax

Formation energy 
predictor

units integers 8…256 171

dropout_rate uniform [0, 0.75] 0.347

kernel_initializer categories
[lecun_normal, 
he_normal]

lecun_normal

activation categories
[tanh, selu, elu, 
relu]

elu

optimizer categories
[adagrad, 
adadelta, adam, 
adamax]

adam



Bulk/shear modulus 
predictor

max_depth integers 3…11 6

alpha log-uniform [10–4, 102] 1.91

gamma log-uniform [10–4, 1] 0.783

lambda log-uniform [1, 10] 9.01

eta log-uniform [10–3, 10–1] 2.12×10–2

subsample uniform [0.3, 1.0] 0.846

colsample_bytree uniform [0.2, 1.0] 0.888

colsample_bylevel uniform [0.2, 1.0] 0.334



Table S3. Summary of performance (regression tasks). Corresponding XGBoost models were trained 
on concatenated latent spaces.

endpoint number of 
structures

source of data performance 
metrics (this study)

performance metrics 
(benchmarking)

formation energy, 
eV/atom

130998 Materials Project7 R2 = 0.93
MAE = 0.19

RMSE = 0.29

MAE = 0.038

thermal conductivity 
at 600 K, ln(W/m×K)

5511 AFLOWLIB9 R2 = 0.71
MAE = 0.45

RMSE = 0.62

heat capacity at 
constant volume, 

kB/atom

2721 AFLOWLIB9 R2 = 0.81
MAE = 0.09

RMSE = 0.14

R2 = 0.9510

MAE = 0.0410

RMSE = 0.0710

heat capacity at 
constant pressure, 

kB/atom

2721 AFLOWLIB9 R2 = 0.81
MAE = 0.10

RMSE = 0.16

R2 = 0.9510

MAE = 0.0510

RMSE = 0.0910

bulk modulus, GPa 2721 AFLOWLIB9 R2 = 0.81
MAE = 24.6

RMSE = 33.7

R2 = 0.9710

MAE = 8.710

RMSE = 14.310

shear modulus, GPa 2721 AFLOWLIB9 R2 = 0.81
MAE = 18.5

RMSE = 31.1

R2 = 0.8810

MAE = 10.610

RMSE = 18.410

Debye temperature, K 2721 AFLOWLIB9 R2 = 0.80
MAE = 64.3

RMSE = 97.8

R2 = 0.9510

MAE = 35.910

RMSE = 57.010

coefficient of thermal 
expansion, ln(1/K)

2721 AFLOWLIB9 R2 = 0.82
MAE = 0.17

RMSE = 0.24

R2 = 0.91 (1/K)10



Table S4. Summary of performance (classification tasks). Corresponding XGBoost models were 
trained on concatenated latent spaces.

endpoint number of 
structures

source of data performance metrics
(this study)

performance metrics
(benchmarking)

band gap, eV (cutoff 
0 eV)

28737 AFLOWLIB9 AUC ROC = 0.93
accuracy = 0.90
F1 score = 0.87

AUC ROC = 0.9810

accuracy = 0.9310

magnetic moment, μB 
(cutoff 0 μB)

30787 JARVIS-DFT11 AUC ROC = 0.86
accuracy = 0.86
F1 score = 0.72

AUC ROC = 0.9612
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