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Mode I fracture simulations 
We simulate a series of athermal and quasistatic uniaxial tension tests for various 
disordered systems. As illustrated in Fig. S1, we iteratively impose small increments of 
strain in the z direction, while the lateral dimensions of the simulation box (x and y 
directions) are fixed during the loading process. Then, after each increment of strain, an 
energy minimization is performed by using the conjugate gradient algorithm. The above 
steps are repeated until a complete fracture is observed. This procedure is equivalent to 
relaxing the system under NVT ensemble at 0 K for enough time after each strain increment. 
 
 

Crystallization of the LJ system 
In the following, all the results are given in reduced units, that is, length in units of 𝜎𝜎, 
energy in units of 𝜀𝜀, stress in units of 𝜀𝜀 𝜎𝜎3⁄ , time in units of 𝜏𝜏 = 𝜎𝜎(𝑚𝑚 𝜀𝜀⁄ )1/2 (where 𝑚𝑚 =
1.0 is the mass of particles), etc. The monodisperse LJ system considered herein is more 
likely to crystallize than polydisperse LJ systems. However, this system is still stable 
enough to remain disordered over extended durations (i.e., over typical MD times of 103τ) 
if the temperature is low enough. To quantity the range of temperature and time over which 
the system can avoid crystallization, we conducted a series of additional MD simulations 
to determine the time after which the system crystalizes as a function of temperature. This 
is accomplished by heating the system up to a target temperature and relaxing it under zero 
pressure in the NPT ensemble until crystallization is observed (which manifests itself by a 
sudden drop in potential energy, see Fig. S2a, and a sharpening of the pair distribution 
peaks). As shown in Fig. S2b, this analysis yields a typical TTT curve, wherein the system 
avoids crystallization at high temperature (due to the absence of any thermodynamic 
driving force) and low temperature (due to a slow kinetics). In turn, the “nose” of the TTT 
curve at intermediate temperature provides the range of time over which the system can 
resist crystallization (so that the monodisperse LJ model considered herein can be applied). 

Electronic Supplementary Material (ESI) for Materials Horizons.
This journal is © The Royal Society of Chemistry 2021

mailto:zw_mxx@whu.edu.cn


 
 

2 
 

We observe that, although the monodisperse LJ model may not be suitable to model atomic 
glasses (e.g., metallic glasses), it can properly describe a wide variety of disordered 
materials (gels, colloids, and granular materials) for which the unit energy ε is high enough, 
so that 300 K corresponds to a reduced temperature for which no crystallization is observed. 
 
To illustrate that the results presented in the main manuscript remain valid at finite 
temperature, we repeated our analysis at non-zero temperature by taking as an example a 
hydrated silicate colloidal gel at 300 K. As shown in Fig. S3, we observe that, indeed, the 
power law relationship between cumulative non-affine displacement and minimum energy 
barrier holds at non-zero temperature—which demonstrates the generality of our findings. 

 
 

Cumulative non-affine displacement 
Note that this definition differs from that of the total non-affine displacement (as obtained 
by comparing the initial and final configurations) since, here, the non-affine displacement 
is always calculated by comparing two configurations that are fairly close to each other 
(i.e., separated from each other by only a small increment of strain). The difference between 
the cumulative non-affine displacement (as used herein) and the total non-affine 
displacement is illustrated in Fig. S4(a) in the case of a perfectly brittle fracture, wherein 
the top blue particles move upward as a rigid body, whereas the bottom red particles move 
down as a rigid body. Since the total non-affine displacement 2

minD  only considers the 
initial and final configurations, the total non-affine displacement does not properly capture 
the local ductile events (or absence thereof herein) as it continually increases. In contrast, 
the cumulative non-affine displacement D used herein does not show any increase once the 
fracture has occurred. To further illustrate this difference, Fig. S4(b) and Fig. S4C show 
the evolution of the mini,D∆ , 2

minD , and D metrics of a select given particle as a function of 
strain during the fracture of a silicate gel system. We find that all the plastic events 
undergone by this particle manifest themselves as a peak in mini,D∆ , which, in turn, results 
in a discontinuity in D. The fact that a given particle can experience several distinct non-
affine plastic displacements during the fracture process eventually leads to a non-
meaningful evolution of 2

minD , which tends to continuously increase (Fig. S4(c)). In 
contrast, the metric D used in this paper can meaningfully capture the number and 
magnitude of the local plastic events occurring within the atomic network during the 
fracture process. 
 
 

Mechanical energy 
To assess whether or not the energy barriers presented in Fig. 3 can be activated by the 
stress resulting from the deformation, we calculate the mechanical energy resulting from 
the imposed deformation 𝐸𝐸m(𝜀𝜀) = 𝑉𝑉 ∫ 𝜎𝜎𝑑𝑑𝜀𝜀𝜀𝜀

0 , where V is the volume of system. As shown 
in Fig. S6, the mechanical energy observed in the colloidal gels is notably larger than in 
the case of glassy silica—mostly on account of their larger volume. Importantly, in both 
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cases, the resulting mechanical energy is large enough to overcome the energy barriers 
shown in Fig. 3. 

 
 

Silica glass with various cooling rates 
To generate silica glasses with different cooling rates, we first melt the irradiated silica 
system at 5000 K under zero pressure in the NPT ensemble for 1 ns, which ensures that the 
system loses the memory of its initial configuration. The melt is then subsequently cooled 
down to 1 K with different cooling rate (i.e., 1 K/ps and 100 K/ps) under zero pressure in 
the NPT ensemble. Finally, the obtained glasses are relaxed at 1 K and under zero pressure 
for an additional 1 ns. The obtained glasses are subjected to uniaxial tensile deformations 
using the method described above. 
 
As shown in Fig. S11, the fast-quenched glass (i.e., more disordered system) shows a more 
ductile fracture behavior as compared to the slowly-quenched glass (i.e., less disordered 
system)—which echoes results obtained for irradiated samples. Importantly, we find that 
the relationship between plastic energy and non-affine particle displacement in these melt-
quenched systems follows the same trend as the one observed in the irradiated systems (see 
the inset of Fig. S11a). This suggests that the origin of structural disorder (i.e., induced by 
melt-quenching or irradiation) does not appear to notably impact the nature of relationship 
between ductility and particle dynamics. In addition, we observe that the power law 
relationship between D and Eave observed in irradiated systems still holds in melt-quenched 
glasses. 
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Fig. S1. Schematic describing the geometry of a disordered structure subjected to uniaxial tension under 

athermal and quasistatic conditions. 
 

 
Fig. S2. Critical crystallization time for the monodisperse LJ systems. (a) Evolution of the potential 

energy upon crystallization under select temperatures. (b) TTT curve showing the time before 
crystallization occurs as the function of temperature. Reduced units are used. 

 

 
Fig. S3. The validation of power law relationship under the finite temperature. Cumulative non-affine 
displacements D of the particles during a 300 K fracture as a function of the average energy barrier that is 
accessible to them. The data are presented for a hydrated silicate colloidal gel characterized by a degree of 

disorder s = –0.35 subjected to different strains. The lines are some power law fits. 
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Fig. S4. Effectiveness of the cumulative non-affine displacement. (a) Schematic illustrating the 

difference between the conventional non-affine square displacement 2
minD  (top plot) and the cumulative 

non-affine displacement D (used herein, bottom plot) of a single atom during the fracture process. Here, the 
top blue particles move upward as a rigid body, whereas the bottom red particles move downward. 

(b) mini,D∆ , D, and (c) 2
minD  of the same particle as the function of strain during the fracture process. 

 

 
Fig. S5. Distributions of the volumetric density of energy barrier in (a) colloidal gels and (b) silica glasses 
with selected degrees of disorder. The energy barrier is rescaled by the cube of the interparticle distance in 

each system (i.e., 50 Å in the colloidal gel and 1.6 Å in glassy silica). 
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Fig. S6. Mechanical energy resulting from the imposed deformation in (a) colloidal gels and (b) silica 

glasses with selected degrees of disorder as the function of strain. 
 

 
Fig. S7. Stress-strain curves of the (a) amorphous silicon and (b) metallic glass systems considered herein 

under uniaxial tension. 
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Fig. S8. Cumulative non-affine displacements D of the particles during fracture as a function of the average 

(red) and minimum (black) height of the energy barriers that are accessible to them. The dashed lines are 
the power law fits. 

 

 
Fig. S9. Distribution of the angles between the direction of the displacements of the particles and the 

direction of the external load at selected strains in the colloidal gel and glassy silica systems considered 
herein. 
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Fig. S10. Distribution of the angles between the direction of the displacements of the particles and the 

direction of the external load at selected strains in the colloidal gel and glassy silica systems considered 
herein. 

 

 
Fig. S11. (a) Stress-strain curves of select silica glasses with distinct cooling rates upon uniaxial tensile 
deformation. The inset shows the plastic energy dissipated during fracture as a function of the average 

cumulative non-affine displacements D. The line is to guide the eye. (b) Cumulative non-affine 
displacements D of the atoms during fracture as a function of the average height of the energy barriers that 

are accessible to them. 
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