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1. Experimental Methods 

1.1. Sample Preparation 

RECuZnP2 (RE = Pr, Nd, Er) compounds were prepared by solid state reactions.  Stoichiometric 

amounts of freshly filed RE pieces (99.9%, Hefa), Cu powder (99.5%, Alfa-Aesar), Zn shot 

(99.99%, Sigma-Aldrich), and red P powder (99.99%, Sigma-Aldrich) were combined, with a 

10% excess of P added to compensate for volatilization losses, in a total mass of 0.3 g.  The 

mixture was pressed into a pellet and placed in a carbon-coated fused-silica tube, which was 

evacuated (0.001 mbar) and sealed.  The carbon coating serves to minimize attack on the tube, 

and to remove oxygen from Cu and Zn metal.  The samples were heated to 500 C over 24 h, 

held there for 48 h, heated to 900 C, held there for 7 d, and then cooled down to room 

temperature over 48 h.  The products were reground and repressed, and the heat treatment was 

repeated.  This procedure led to nearly phase pure samples. 

 The samples were placed in a stainless steel SPEX mill vial equipped with two half-inch 

stainless steel ball bearings.  They were ball-milled for 10 min and turned into fine-grained 

powders in preparation for spark plasma sintering (SPS), for which the particle size is critical to 

ensure densification.  The powders were placed into a graphite die and sintered in a Dr. Sinter 

SPS-211LX apparatus at 800 C for 5 min under a pressure of 45 MPa, followed by radiative 

cooling to room temperature under a pressure of 5 MPa.  The Er-containing sample was 

reprocessed because the initial pressing parameters and particle size were insufficient for proper 

densification.  The sintered samples had a diameter of 10 mm and thickness of 2 mm.  They were 

polished to obtain flat, parallel surfaces. 
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1.2. X-ray Diffraction Analysis 

Powder X-ray diffraction (XRD) patterns of the ground samples were collected on an Inel 

diffractometer equipped with a curved position-sensitive detector (CPS120) and a Cu K1 

radiation source and a Rigaku Smartlab diffractometer with Cu Kα radiation.  The samples were 

analyzed before and after consolidation to confirm that no structural changes occurred.  Le Bail 

fittings were applied to the powder XRD patterns (Figure S1).  The refined cell parameters agree 

well with those previously reported (Table S1).[1] 

 
Figure S1. Le Bail fittings of powder X-ray diffraction patterns for (a) PrCuZnP2, (b) 

NdCuZnP2, and (c) ErCuZnP2.  Blue tic marks show peak positions and green curve is the 

difference plot.  Minor amounts of RECu5/REZn5 (in PrCuZnP2 and NdCuZnP2) and Er2O3 (in 

ErCuZnP2) were observed. 
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Table S1. Refined lattice parameters of PrCuZnP2, NdCuZnP2, and ErCuZnP2. 

Compound a / Å c / Å V / Å3 Ref. 

PrCuZnP2 4.047(1) 6.661(1) 94.5(1) [1] 

PrCuZnP2 4.047(9) 6.654(1) 94.4(4) This work 

NdCuZnP2 4.024(1) 6.615(2) 92.8(1) [1] 

NdCuZnP2 4.035(1) 6.621(7) 93.4(1) This work 

ErCuZnP2 3.958(1) 6.479(1) 87.9(1) [1] 

ErCuZnP2 3.958(9) 6.484(8) 88.0(5) This work 

 

 Close inspection reveals that the diffraction peaks are consistently narrower in ErCuZnP2 

than in PrCuZnP2 or NdCuZnP2 (Figure S2).  Qualitatively, this observation suggests that the 

grain sizes are larger in the Er-containing sample. 

 

Figure S2. Comparison of breadths of major diffraction peaks suggests that the ErCuZnP2 

sample has larger grain sizes. 

 

 The RECuZnP2 (RE = Pr, Nd, Er) compounds crystallize in the trigonal CaAl2Si2-type 

structure.  The structure consists of anionic [MP2]
3− layers (M = Cu, Zn) stacked along the c-

direction and separated by RE3+ cations (Figure S3).[1]  Alternatively, the structure can be 
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described as a stacking of nets of P atoms in an hcp sequence, with half the octahedral sites 

occupied by RE atoms, and half the tetrahedral sites by M atoms.  The Cu and Zn atoms are 

disordered over the M site located at 2d (1/3, 2/3, ~0.63).  The relatively open space between the 

layers and the disorder of M atoms are structural features that may be conducive to low thermal 

conductivity.  Other CaAl2Si2-type compounds have been demonstrated to show high 

thermoelectric efficiency, such as EuZn2Sb2,
[2] EuCd2Sb2,

[3] and YbZn2Sb2.
[4]  These layered 

compounds exhibit enhanced electrical conductivity within the planes while showing only a 

slight increase in thermal conductivity. 

 
Figure S3. Crystal structure of RECuZnP2 viewed (a) perpendicular to and (b) along the c-

direction.  The Cu and Zn atoms are disordered over tetrahedral sites. 

 

1.3. Physical Property Measurements 

Elastic properties were determined via resonant ultrasound spectroscopy using an ACE-RUS008 

system with a TS 001 stage.[5]  The samples were measured at a frequency sweep of 50 to 400 

kHz and a transducer output amplitude of 50 mV. Electrical resistivities and Hall coefficients 

were measured on a custom-built instrument.  Tungsten electrodes were mechanically mounted 

onto samples in a four-point probe geometry.  For Hall measurements, an external magnetic field 

of ±0.8 T was applied.  Seebeck coefficients were measured on a custom-built instrument with 
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axially applied thermocouples and thermal gradient.  A temperature gradient of ±5 K was 

applied, and the Seebeck coefficient was extracted from a linear fit of the voltage vs temperature 

gradient curve.  Thermal diffusivities α were measured on a Netzsch LFA-457 laser flash 

apparatus.  The pellets were coated in graphite to enhance blackbody radiation.  The thermal 

conductivity was calculated from the relationship 𝜅 = 𝛼 · 𝐶𝑝 · 𝑑, where d is the mass density and 

Cp is the heat capacity at constant pressure.  The heat capacity was approximated, following the 

Neumann-Kopp law, as the weighted sum of the molar heat capacities of the component 

elements.  Uncertainties in the thermal conductivity were evaluated by taking three consecutive 

measurements of the thermal diffusivity, and 5% from the density and heat capacity at constant 

pressure.  Uncertainties in the thermoelectric figure of merit are set to 15%. 

 

2. Computational Methods 

2.1 High-fidelity density functional theory calculations 

Density functional theory (DFT) calculations were performed using the Vienna Ab Initio 

Simulation Package (VASP)[6] employing a plane-wave basis set and projector-augmented wave 

(PAW) pseudopotentials.[7]  Given the computational expense of compressive-sensing lattice 

dynamics (CSLD) calculations,[8] the disordered crystal structures of RECuZnP2, determined 

experimentally from X-ray diffraction, were modeled as ordered structures containing 5 atoms per 

unit cell.  Geometry relaxations and all supercell calculations were performed using the Perdew-

Burke-Ernzerhof generalized-gradient approximation (PBE-GGA)[9] exchange correlation 

functional.  For geometry optimizations, the cut-off energy was set to 500 eV and a 12  12  6 k-

point mesh was used for convergence.  To evaluate the influence of Cu/Zn disorder, two disordered 

configurations in a 2x2x2 supercell were computed: one a quasi-random structure – maximizing 
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disorder – and the other a “super-ordered” structure.  The latter is lower in energy by (~13 meV 

atom-1 for ErZnCuP2) and identical in energy to the perfectly ordered, 5-atom primitive cell.   

 Electronic properties, including band structures, density of states, and dielectric constants, were 

calculated using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional.[10]  A k-point mesh of 

6  6  3 was sufficient to provide convergence for band gaps and dielectric constants.  

Dielectric constants were calculated using the Perturbation Expression After Discretization 

(PEAD) approach of Nunes and Gonze,[11] and Souza et al.[12]  Due to self-interaction errors 

present in density functional theory, partially filled f states can often lead to large errors for rare 

earth elements. For this reason, we use the Pr_3, Nd_3, and Er_3 VASP pseudopotentials in 

which 2, 3, 11 f-electrons are treated as core states, respectively. 

 The electronic band structures reveal small band gaps of 0.52 eV for NdCuZnP2, 0.54 eV 

for PrCuZnP2, and 0.73 eV for ErCuZnP2 (Figure S4).  The valence band maximum is located at 

Γ and the conduction band minimum is located at L. 
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Figure S4. HSE06 electronic band structures and density of states (DOS) for (a,b) PrCuZnP2, 

(c,d) NdCuZnP2, and (e,f) ErCuZnP2.  No significant differences were observed among the three 

electronic band structures. 

  

Harmonic and anharmonic interatomic force constants were calculated using CLSD.[8]  

For fitting, twenty training 4  4  3 supercells were set up containing 240 atoms randomly 

displaced by up to 0.05 Å.  An energy cut-off of 500 eV and k-point mesh of 3  3  2 were 

used.  Pair and triplet clusters were selected within cut-off diameters of 8 and 4.5 Å, and 10% of 

sample clusters were held out for cross-validation whose error was low (~4%). 

 Lattice thermal conductivity was calculated using first-order perturbation theory for three 

phonon scattering, as implemented in ShengBTE[13] using the force constants obtained from 
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CSLD.  Previous studies have established that these methods are robust for accurately predicting 

lattice thermal conductivity.  A 24  24  20 q-point mesh led to well-converged results.  The 

thermal conductivity was found to be highest parallel to the layers in the crystal structure and 

lowest perpendicular to the layers, consistent with the relative strengths of bonding interactions 

in the structure.  ErCuZnP2 has a slightly higher thermal conductivity than NdCuZnP2 because of 

its shorter bonds and stronger interatomic forces.  To compare with the experimental thermal 

conductivities, which were measured on polycrystalline samples of RECuZnP2, the harmonic 

average of the calculated thermal conductivities along the three Cartesian directions was taken as 

𝜅𝑝𝑜𝑙𝑦 = 3 (2 ∙ 𝜅𝑥,𝑦
−1 + 𝜅𝑧

−1)⁄ , where κx,y is the in-plane and κz is the out-of-plane thermal 

conductivity.  This value represents the lower Wiener bound for composite materials. 

 Electronic transport properties (electrical resistivity, electronic contribution to the thermal 

conductivity, Seebeck coefficient, and hole mobility) were calculated within the AMSET 

formalism (https://hackingmaterials.lbl.gov/amset/), which explicitly includes band and k-point 

dependent scattering rates.  In this approach, transport properties were determined assuming the 

momentum relaxation time approximation to the Boltzmann transport equation, with band 

structures and wavefunctions obtained using the HSE06 functional.  As has been described in 

detail elsewhere,[14] scattering rates were calculated from materials parameters obtained from 

first principles (Table S2).  In this work, the scattering mechanisms considered were ionized 

impurity scattering, acoustic deformation potential scattering, and polar optical phonon 

scattering.  The scattering matrix elements 𝑔(𝒌, 𝒒) represent the probability of scattering from 

electronic state |𝒌⟩ to state |𝒌 + 𝒒⟩, according to: 

𝑔imp(𝒌, 𝒒) = [
𝑒2𝑛ii

𝜖s
2 ]

1

2 ⟨𝜓𝒌+𝒒|𝜓𝒌⟩

|𝒒|2+𝛽2
 (1) 
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𝑔adp(𝒌, 𝒒) = [
𝑘B𝑇𝜀𝑑

2

𝐵
]

1

2
⟨𝜓𝒌+𝒒|𝜓𝒌⟩ (2) 

𝑔pop(𝒌, 𝒒) = [
ℏ𝜔po

2
(
1

𝜖∞
−

1

𝜖s
)]

1

2
⟨𝜓𝒌+𝒒|𝜓𝒌⟩

|𝒒|
 (3) 

where 𝑇 is temperature, 𝑒 is the electron charge, ℏ is the reduced Planck constant, 𝑘B is the 

Boltzmann constant, 𝑛ii is the concentration of ionized impurities, 𝛽 is the inverse screening 

length calculated from the density of states, 𝜓𝒌 is the wavefunction of state |𝒌⟩, 𝜖𝑠 is the static 

dielectric constant, 𝜖∞ is the high-frequency dielectric constant, 𝜀d is the volume-deformation 

potential at the valence band maximum, 𝐵 is the bulk modulus, and 𝜔po is an effective optical 

phonon frequency.  These expressions require only material-dependent parameters which can be 

computed relatively quickly from first principles (Table S1).[14]  Because it is not feasible to 

determine the exact ionized impurity concentration, the concentration was set equal to the 

number of free carriers (electrons + holes).  The exact value should maximally differ to 𝑛ii by a 

factor of 2-3 (i.e., if charge compensation is significant).  Previous calculations indicated that this 

approach could accurately reproduce the mobility of Si and GaAs as function of carrier 

concentration.[15] 

 Owing to convergence problems, the static and high-frequency dielectric constant and the 

polar optical phonon frequency could not be obtained for ErCuZnP2.  However, given that the 

electrical and vibrational properties of ErCuZnP2 and NdCuZnP2 are exceedingly similar, the 

values obtained for NdCuZnP2 were used in both cases. 
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Table S2. Materials parameters for PrCuZnP2, NdCuZnP2, and ErCuZnP2 used in AMSET 

calculations of electronic transport properties.  εs and ε∞ are the static and high-frequency dielectric 

constants, Ed
VBM is the volume deformation potential at the valence band maximum (VBM), B is 

the bulk modulus, and ωpo is the effective polar optical phonon frequency. 

Compound εs ε∞ Ed
VBM / eV B / GPa ωpo / THz 

PrCuZnP2 26.29 14.54 1.39 86.88 6.46 

NdCuZnP2 26.33 14.23 1.40 88.00 6.49 

ErCuZnP2 26.33 14.23 1.69 94.03 6.49 

CaZn2P2 16.53   8.79 1.75 61.12 7.26 

 

 This method has the benefit to compute the mobilities for the individual scattering 

mechanism as a function of temperature (Figure S5).  All three compounds exhibit mobilities 

limited by polar optical phonons. In fact, acoustic deformation potential is more than two orders 

of magnitude higher than the overall mobility suggesting that acoustic deformation potential is 

not a major contributor to scattering in these compounds. 

 

Figure S5: Theoretical mobilities of (a) PrCuZnP2, (b) NdCuZnP2, and (c) ErCuZnP2 as a 

function of temperature separated in acoustic deformation potential (ADP), ionized impurity 

(IMP), and polar optical phonon (POP) scattering. Mobilities decrease with atomic number of 

RE and temperature. 
 

The same trend of the scattering mechanisms was observed for the simpler (i.e. does not contain 

f-electrons and disorder on the metal site) compound CaZn2P2 (Figure S6). The total mobility in 
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CaZn2P2 is only half of that for RECuZnP2 due to a decrease in dielectric constants and increase 

in the effective polar optical phonon frequency (Table S2). 

 

Figure S6: (a) HSE06 electronic band structure, (b) DOS, (c) scattering rate, and (d) mobility 

of CaZn2P2. Smaller separation of valence bands at Γ leads to higher conductivity effective mass. 

Like RECuZnP2, hole mobility of CaZn2P2 is limited by polar-optical phonon (POP) and ionized 

impurity (IMP) scattering. Acoustic deformation phonon (ADP) scattering does not significant 

affect the mobility. 

 

2.2. Computational Screening of Disordered Materials 

Disordered crystalline materials present great opportunity for thermoelectric applications, as many 

have not been examined for thermoelectric merit.  To identify promising yet unexplored candidates 

for thermoelectric devices, we undertook a high-throughput, machine learning (ML)-guided 
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screening of 20,211 disordered (partial occupancy) materials from the 2017 edition of the 

Inorganic Crystal Structure Database (ICSD).[16] Among these structures, 19,623 were 

successfully ordered using the pymatgen material science analysis software.[17]  

To prioritize compounds with high probability of thermodynamic stability and high 

thermoelectric performance, we devised a low-fidelity performance metric as follows: 

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑃𝐹𝑖
1𝑒20,1000𝐾 ∙ 10−5∙𝐸𝑎𝑏𝑜𝑣𝑒 ℎ𝑢𝑙𝑙 ∙ 𝛿𝑔𝑎𝑝 

where 𝑠𝑐𝑜𝑟𝑒𝑖 is the i-type score (𝑖 ∈ {𝑛, 𝑝}-type), PF is the absolute i-type BoltzTraP[18] maximum 

computed power factor at 1000 K and 1020 carriers cm-3, 𝐸𝑎𝑏𝑜𝑣𝑒 ℎ𝑢𝑙𝑙 is the DFT-computed energy 

above the convex hull (with respect to compounds in the Materials Project),[19] and 𝛿𝑔𝑎𝑝 is a factor 

for whether the material is semiconducting in an undoped state (𝛿𝑔𝑎𝑝 = 1 if 𝐸𝑔𝑎𝑝 = 0,  𝛿𝑔𝑎𝑝 = 0  

otherwise). To account for both possible n- and p-type doping, the maximum score was taken 

among both types and normalized by the number of sites (𝑛𝑠𝑖𝑡𝑒𝑠) in the structure: 

𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 =

{
 
 

 
 
𝑠𝑐𝑜𝑟𝑒𝑝

√𝑛𝑠𝑖𝑡𝑒𝑠
, 𝑠𝑐𝑜𝑟𝑒𝑝 > 𝑠𝑐𝑜𝑟𝑒𝑛

𝑠𝑐𝑜𝑟𝑒𝑛

√𝑛𝑠𝑖𝑡𝑒𝑠
, 𝑠𝑐𝑜𝑟𝑒𝑛 > 𝑠𝑐𝑜𝑟𝑒𝑝

 

 where 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 is the final score of a compound representing a low-fidelity estimate of its 

thermoelectric performance and tractability for high-throughput computation.  Using a dataset of 

48,000 DFT-BoltzTraP calculations reported by Chen et al.,[20] we trained a Gradient Boosting 

Trees ML model to predict 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 from global symmetry features and stoichiometrically-

weighted composition features generated with the data mining software matminer.[21] The final 

model produced predictions on a 25% random validation set with 49% less 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 RMSE than 

a dummy predictor selecting the mean 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 of the validation set. To further validate our 

model, we compared the rate of selecting candidate structures in the top 1% 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙 percentile 
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in a “blind search” fashion on the same validation set; we found the model could identify 95% of 

these high-scoring candidates in less than 1/5 the calculations of a random search. The 19,623 

disordered structures were then rank-ordered according to their predicted 𝑠𝑐𝑜𝑟𝑒𝑓𝑖𝑛𝑎𝑙. 

 The top 3,927 candidate structures were then computed using plane-wave DFT using PAW 

psuedopotentials and the Perdew-Burke-Erznerhof (PBE)[9] functional as implemented in VASP. 

All DFT computations were performed using atomate,[22] a high-throughput DFT framework.  For 

purposes of prioritizing candidates for more in-depth computational study (as described in 2.1) the 

BoltzTraP[18] package was used to predict thermoelectric power factors using a constant relaxation 

time of 10−14 s.  From the most promising sets of 20 candidates for both n and p-types, the 

REZnCuP2 compounds discussed in the main text were identified and selected for further analysis. 

 

3. Comparison of Experimental and Computed Properties 

3.1. Hole mobility 

Examining the temperature dependence of the mobility provides insights into the scattering 

mechanisms that limit the relaxation time (Figure S7).  When the experimental hole mobilities 

are fitted for PrCuZnP2, the temperature dependence is found to be T−1.55, indicating that the most 

likely limiting mechanism is purely acoustic phonon scattering (in theory, 𝜇 ∝  𝑇−3/2  for non-

degenerate carriers and 𝜇 ∝  𝑇−1  for degenerate carriers).  The temperature dependence changes 

from T −1.33 for NdCuZnP2 to T −1.23 for ErCuZnP2, suggesting that multiple mechanisms are at 

play, such as acoustic phonon scattering for degenerate and non-degenerate carriers, polar optical 

phonon scattering, or ionized impurity scattering.  The computed hole mobilities are similar for 

all three compounds, with nearly identical temperature dependence of T−0.74 indicating that polar 

optical phonon scattering, and, to a lesser extent, ionized impurity scattering are the limiting 
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mechanisms.  At high temperatures, the computed mobilities become overestimated compared to 

the experimental values.  Although grain boundary and disorder scattering can attenuate the 

temperature dependence (flattening the mobility curves), both mechanisms will also significantly 

lower the overall mobility.  Because ErCuZnP2 shows the highest experimental mobility but the 

weakest temperature dependence, these mechanisms cannot completely explain the discrepancy 

between experimental and computed values.  This discrepancy may suggest we are potentially 

missing a scattering mode in AMSET, which could correspond to optical deformation potential 

scattering. 

 

Figure S7. Temperature dependence of hole mobility.  Although the computed mobilities show 

nearly the same temperature dependence (T−0.74), the experimental mobilities follow flatter 

curves on progressing from PrCuZnP2 (T−1.55) to ErCuZnP2 (T−1.23). 

 

3.2. Single Parabolic Band Model with Different Scattering Mechanisms 

The single parabolic (SPB) model is often applied to compare mobilities and Seebeck 

coefficients as a function of carrier concentration (Pisarenko plot) and to guide the optimization 

of thermoelectric figures of merit.  It is also used to extract the DOS effective mass (𝑚𝐷𝑂𝑆
∗ ) and 



  

SI-16 

effective Lorenz number from experimental data, so that the electronic and phononic 

contributions to the thermal conductivity can be separated. 

 In the SPB model, electron transport is restricted to a single parabolic band subject to 

various scattering mechanisms.  Conventionally, the electronic conduction is assumed to be 

limited by acoustic phonon scattering, as signaled by the temperature dependence of the 

mobility.  However, recent thermoelectrics studies have shown that other scattering mechanisms 

can give rise to a similar temperature dependence.  For example, even though the mobility in 

polycrystalline SnSe varies as T−3/2,[23] the dominant mechanism has been proposed to be polar 

optical phonon scattering instead of acoustic phonon scattering,[24] and may be applicable to 

other thermoelectric materials.[25,26,27]  Until recently, first-principles electron-phonon 

calculations to determine scattering mechanisms have been prohibitively costly.  The present 

results, which were obtained more manageably through AMSET, indicate that polar optical 

scattering dominates in RECuZnP2 (Figure 2 in main text).  To examine how the type of 

scattering affects the transport properties calculated using the SPB model, three scattering 

mechanisms were considered:  acoustic deformation potential (ADP), polar optical phonon 

(POP), and ionized impurity scattering (IMP).  The relaxation times depend on energy according 

to: 

𝜏𝐴𝐷𝑃(𝐸) = 𝜏0𝐸
−1/2 (4) 

𝜏𝑃𝑂𝑃(𝐸) = 𝜏0
𝐸1/2

sinh−1(√𝐸)
 (5) 

𝜏𝐼𝑀𝑃(𝐸) = 𝜏0
𝐸3/2

ln(1+𝑏)−
𝑏

1+𝑏

 (6) 

where 𝜏0 is the intrinsic relaxation time and 𝑏 =
8𝑚𝐷𝑂𝑆

∗ 𝐸𝜀𝑘𝐵𝑇

ℏ2𝑛𝐻𝑒2
 (ɛ is the dielectric constant set to the 

computed values (Table S1), 𝑘𝐵 is the Boltzmann constant, T is the absolute temperature, ℏ is 
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the reduced Planck’s constant, nH is the Hall carrier concentration, and e is the elementary 

charge).[28]  The relaxation time for ionized impurity scattering makes use of the Brooks-Herring 

formula.  Instead of applying the scattering parameter λ, as is commonly done in the SPB model, 

[29] the relaxation times in Equations 4–6 are closer to theory, improving the accuracy of 

computed thermoelectric properties.[28]  The reduced chemical potential η is obtained from the 

experimental Seebeck coefficient:[29] 

𝑆(𝜂) =
𝑘𝐵

𝑒
∙
∫ 𝜖

3
2(𝜖−𝜂)𝜏(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0

∫ 𝜖
3
2𝜏(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0

 (7) 

where 𝜖 is the reduced energy and f is the Fermi-Dirac distribution, and from there, other 

transport properties are calculated, as described below. 

 

3.3. Effective Mass, Mobility, and Seebeck Coefficient 

The DOS effective mass 𝑚𝐷𝑂𝑆
∗  was calculated from the reduced chemical potential, temperature, 

and experimental Hall carrier concentration according to:[29] 

𝑛𝐻(𝜂, 𝑇,𝑚𝐷𝑂𝑆
∗ ) =

8𝜋(2𝑚𝐷𝑂𝑆
∗ 𝑘𝐵𝑇)

3/2

3ℎ3

(∫ 𝜖
3
2𝜏(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0 )

2

∫ 𝜖
3
2𝜏2(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0

 (8) 

Plots of 𝑚𝐷𝑂𝑆
∗  for RECuZnP2 show that it is independent of the RE cation, but strongly 

dependent on the scattering mechanism (Figure S8).  The value of 𝑚𝐷𝑂𝑆
∗  remains relatively low 

at all temperatures for ionized impurity scattering, increases from 0.52 to 0.76 me as the 

temperature increases from 373 to 673 K for polar optical phonon scattering, and rises above 1 at 

673 K for acoustic phonon scattering (Table S3). 
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Figure S8. Temperature-dependent effective mass from density of states (𝑚𝐷𝑂𝑆

∗ ) for PrCuZnP2, 

NdCuZnP2, and ErCuZnP2 using the single parabolic band (SPB) model with different scattering 

mechanisms.  The increase in 𝑚𝐷𝑂𝑆
∗  with higher temperature suggests that more bands contribute 

to the Seebeck coefficient at higher temperature. 

 
 

The electronic band structures reveal that several bands contribute to hole transport, namely 

a set of doubly-degenerate bands located at the valence band maximum and another band located 

just a few meV below (Figure S4).  At 673 K, the DOS effective mass can be calculated from the 

degeneracy (Nv = 3) and the DFT predicted conductivity effective mass (m* = 0.37 – 0.44 me) to 

be 𝑚𝐷𝑂𝑆
∗  = Nv

2/3·m* = 0.77 – 0.90 me.  Similarly, at 373 K, from the degeneracy (Nv = 2) and the 

conductivity effective mass (m* = 0.37 – 0.43 me), the DOS effective mass is 𝑚𝐷𝑂𝑆
∗  = 0.59 – 0.68 

me.  The SPB values agree well with the AMSET computed values for PrCuZnP2 and NdCuZnP2, 

but are overestimated for ErCuZnP2 (Table S3), probably because the SPB model incorrectly 

assumes that only a single parabolic band is involved in charge transport. 
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Table S3. The SPB derived DOS effective mass, 𝑚𝐷𝑂𝑆
∗ , evaluated assuming acoustic phonon (ADP), polar 

optical phonon (POP), and ionized impurity (IMP) scattering at 373 and 673 K. 

Compound 𝑚𝐷𝑂𝑆
∗  / me (373 K) 𝑚𝐷𝑂𝑆

∗  / me (673 K) 

PrCuZnP2 (SPB) 0.89 (ADP); 0.54 (POP); 0.34 (IMP) 1.30 (ADP); 0.77 (POP); 0.50 (IMP) 

PrCuZnP2 

(AMSET) 

0.59 0.77 

NdCuZnP2 (SPB) 0.85 (ADP); 0.51 (POP); 0.33 (IMP) 1.26 (APD), 0.74 (POP); 0.48 (IMP) 

NdCuZnP2 

(AMSET) 

0.61 0.80 

ErCuZnP2 (SPB) 0.88 (ADP); 0.52 (POP); 0.33 (IMP) 1.26 (ADP); 0.76 (POP); 0.49 (IMP) 

ErCuZnP2 

(AMSET) 

0.68 0.90 

CaZn2P2 (AMSET) 0.98 1.00 

 

 All three RECuZnP2 compounds have lower conductivity effective mass than CaZn2P2 

(m* = 0.47 – 0.48 me between 300 K to 673 K using a carrier concentration of 1019 cm−3), 

because the valence bands at Γ are split less and the third band contributes to the conductivity 

and effective mass above 300 K.  Therefore, the RECuZnP2 compounds also have lower DOS 

effective mass than CaZn2P2,
[30] consistent with their lower experimental Seebeck coefficients 

(Figure 1 (d) in the main text, Figure S9). 

 The intrinsic mobility, 𝜇0 = 𝜏0
𝑒

𝑚𝐷𝑂𝑆
∗ , is calculated from:[29] 
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𝜇𝐻(𝜂, 𝑇,𝑚𝐷𝑂𝑆
∗ ) =

𝑒

𝑚𝐷𝑂𝑆
∗

∫ 𝜖
3
2𝜏2(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0

∫ 𝜖
3
2𝜏(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0

 (9) 

using the chemical potential and the experimental Hall mobility.  If the temperature and effective 

mass are fixed, the Hall mobility and Seebeck coefficient can be computed as a function of Hall 

carrier concentration using Equations 7, 8, and 9.  The Hall mobility changes drastically with 

scattering mechanism and RE component (Figure S10 (a)).  For acoustic phonon scattering, the 

mobility decreases with higher carrier concentration.  For polar optical phonon scattering, the 

mobility barely varies with carrier concentration, and ErCuZnP2 has the highest intrinsic 

mobility.  The intrinsic mobility is significantly higher for ErCuZnP2 than for PrCuZnP2 and 

NdCuZnP2, consistent with the larger grain sizes as noted earlier from the peak widths in the 

powder XRD patterns (Figure S2).  For ionized impurity scattering, the mobility increases 

rapidly with higher carrier concentration, and ErCuZnP2 has the lowest intrinsic mobility; these 

trends are in disagreement with experimental results.  As implemented here, ionized impurity 

scattering assumes that the carrier concentration varies without change in impurity concentration.  

The Pisarenko plots reveal that the Seebeck coefficient is independent of scattering mechanisms 

and RE component (Figure S10 (b)). 
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Figure S9: The Seebeck coefficient of ErCuZnP2 whose reduction past 860 K indicates the onset 

of bipolar contribution. 

 

 

 
Figure S10. (a) Hall mobility and (b) Seebeck coefficient for PrCuZnP2 (blue), NdCuZnP2 

(orange), and ErCuZnP2 (green) as a function of Hall carrier concentration at 373 K.  The 

extrapolations are made with the SPB model assuming acoustic phonon (solid line), polar optical 

phonon (dashed line), and ionized impurity scattering (dotted line) scattering mechanisms. The 

Hall mobility increases with heavier RE component (except for ionized impurity scattering), and 

the Seebeck coefficient is independent of RE component. 
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3.4. Electronic and Phononic Contributions to Thermal Conductivity 

 The total thermal conductivity consists of electronic and phononic contributions.  The 

phononic contribution κph is revealed by subtracting the electronic contribution κel from the total 

thermal conductivity.  The electronic contribution can be obtained from the Wiedemann-Franz 

law, 𝜅𝑒𝑙 = 𝐿𝑒𝑓𝑓(𝑇 𝜌⁄ ), which requires the effective Lorenz number Leff to be determined first. 

 In the most common method, the Lorenz model developed by Kim et al. relates Leff to 

experimental data, but this model assumes that scattering is limited by acoustic phonons only.[31]  

Instead, the SPB model was applied to compare how different scattering mechanisms influence 

the effective Lorenz number, which is defined as:[29] 

𝐿𝑒𝑓𝑓 =
𝑘𝐵
2

𝑒2

∫ 𝜖
3
2𝜏(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0 ∫ 𝜖

3
2𝜏𝜖2(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0 −(∫ 𝜖

3
2𝜏𝜖(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0 )

2

(∫ 𝜖
3
2𝜏(−

𝜕𝑓

𝜕𝜖
)d𝜖

∞
0 )

2  (10) 

The effective Lorenz numbers were computed based on acoustic phonon, polar optical phonon, 

or ionized impurity scattering in the framework of the SPB model (left panels of Figure S11).  

These can be compared with the AMSET-computed Leff values, which increase on proceeding 

from acoustic phonon to ionized impurity scattering.  The best agreement between experimental 

(SPB model) and AMSET-computed Leff values was found for polar optical scattering, which is 

consistent with the arguments presented in the main text (Figure 2). 

 Combining the SPB-calculated values of Leff with the measured resistivities allows the 

experimental electronic contribution κel to the thermal conductivity to be determined.  For all 

three RECuZnP2 compounds, the AMSET-computed κel values are overestimated compared to 

the experimental values (middle panels of Figure S11), mainly because the computed electrical 

resistivities are underestimated (Figure 1 (a) in main text). 
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Finally, the phononic contributions κph can be examined (right panels of Figure S11).  

For ErCuZnP2, the minimum phononic contribution changes from 0.72 W m−1 K−1 using ionized 

impurity scattering to 1.25 W m−1 K−1 using acoustic phonon scattering.  The effect is less 

pronounced for PrCuZnP2 (κph = 1.08 to 1.24 W m−1 K−1) and NdCuZnP2 (κph = 0.96 – 1.08 W 

m−1 K−1) because of their higher resistivities (Figure 1 (a) in main text).  If polar optical 

scattering is accepted to be the operative mechanism, as shown earlier in the analysis of electron 

transport, then the minimum κph values are found to be very low, varying from 1.08 W m−1 K−1 

for PrCuZnP2 to 0.96 W m−1 K−1 for ErCuZnP2.  In fact, they approach the glassy limits for 

thermal conductivity determined using the experimental speeds of sound. 
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Figure S11. Effective Lorenz numbers, and electronic and phononic contributions to thermal 

conductivity of RECuZnP2.  The markers define the experiment derived SPB values (Exp) while 

the solid lines define the computed ASMET or CSLD results (Comp).  The Lorenz number was 

computed using the SPB model with different scattering mechanisms: (a) acoustic phonon, (b) 

polar optical phonon, and (c) ionized impurity scattering.  The computed Lorenz number and 

electronic contribution were calculated using AMSET and the phononic contribution was 

calculated using CSLD. 
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3.5. Optimization of Thermoelectric Performance 

To gain insight on how to improve the thermoelectric figure of merit, which depends strongly on 

carrier concentration, the SPB model was applied, under the assumption that intrinsic mobility 

and 𝑚𝐷𝑂𝑆
∗  do not change with carrier concentration.  The thermoelectric figure of merit was 

computed as a function of Hall carrier concentration according to:[29] 

𝑧𝑇 =
𝑆2

𝐿+(𝛽𝜓)−1
 (11) 

with the two parameters 𝛽 and 𝜓 defined as: 

𝛽 =
𝜇0(𝑚𝐷𝑂𝑆

∗ /𝑚𝑒)
3/2

𝑇5/2

𝜅𝑝ℎ
 (12) 

𝜓(𝜂) =
8𝜋𝑒

3
(
2𝑚𝑒𝑘𝐵

ℎ2
)
3/2

∫ 𝜖
3

2𝜏 (−
𝜕𝑓

𝜕𝜖
) d𝜖

∞

0
 (13) 

 The thermoelectric figure of merit computed using the SPB model varies with scattering 

mechanism (Figure S12).  The optimum carrier concentration increases on proceeding from 

acoustic phonon, to polar optical phonon, to ionized impurity scattering.  This trend is consistent 

with the differences in mobility, presented above.  The computed figures of merit are higher than 

the experimental values because the mobilities are overestimated.  As a possible way to improve 

the agreement, grain boundary scattering can be considered in computation of electronic and 

thermal transport. 
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Figure S12. (a) zT as a function of carrier concentration determined using the single-parabolic 

band (SPB) model for PrCuZnP2 (●), NdCuZnP2 (▼), and ErCuZnP2 (►) at 673 K. (b) The 

AMSET/CSLD computed zT values as a function of carrier concentrations overestimate the 

thermoelectric performance.  In particular, a large difference is observed for PrCuZnP2 and 

NdCuZnP2, most likely because the scattering time is overestimated (e.g., through neglect of 

grain boundary scattering). 
 

3.6. Grain Boundary Scattering 

When the lattice thermal conductivity determined experimentally (using SPB and assuming polar 

optical phonon scattering) and computationally (using CSLD) for NdCuZnP2 are compared, the 

limiting grain size appears to be 25 nm (Figure S13).  Given that PrCuZnP2 exhibits similar 

diffraction peak widths (Figure S2) and experimental thermal conductivities (Figure 3 in main 

text) as NdCuZnP2, a grain size of 25 nm was assumed for both compounds.  When the 

electronic and thermal properties are computed with grain boundary scattering included (Figure 

S14), the Seebeck coefficients decrease slightly, but the mobilities are drastically reduced, 

resulting in higher resistivity.  However, the computed mobilities are still larger relative to 

experimental values, probably because the defect concentrations are underestimated or other 

types of scattering mechanisms (such as disorder and optical deformation potential scattering) 
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have been neglected.  The computed total thermal conductivities agree well with experimental 

results when grain boundary scattering was included, and the thermoelectric figures of merit are 

mostly unaffected. 

 
Figure S13. Phononic contribution to the thermal conductivity in NdCuZnP2 as a function of 

the mean free path.  Experimentally determined values are marked.  The phononic thermal 

conductivity appears to be limited by a grain size of 25±5 nm. 
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Figure S14. Experimental (markers) and computational (lines) results of (a) mobility, (b) 

Seebeck coefficient, (c) total thermal conductivity, and (d) figure of merit for RECuZnP2.  Grain 

boundary scattering (dashed line), assuming a grain size of 25 nm, was included for PrCuZnP2 

and NdCuZnP2.  The lattice thermal conductivity for PrCuZnP2 was set to be the same as for 

NdCuZnP2. 

 

3.7. Mass-Disorder Scattering 

Disorder scattering of phonons comes from mass disorder and strained lattice. The effect of mass 

disorder is given by: 

 

𝜏−1 =
𝜋𝜔2

2
∑ ∑ 𝑓𝑎(𝑠) (1 −

𝑀𝑎

𝑀�̂�
)
2

|𝑢𝜆
∗(𝑎) ∙ 𝑢𝜆𝑎𝑠 (𝑎)|𝛿(𝜔𝜆 − 𝜔𝜆′)    (10) 
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with fa(s) is the fraction of atom a on site s, Ma is the mass of atom a, 𝑀�̂� is the average mass on 

site s, and 𝑢𝜆(𝑎) is the eigenvector of mode λ and atom a.[13] The strength of the scattering is 

determined fundamentally by the deviation of atomic masses (Cu or Zn) from their average mass.  

However, because Cu and Zn have minimal difference in mass, mass disorder scattering would be 

negligibly small (Figure S15). Local lattice strain due to disorder may lead to some additional 

lowering of lattice thermal conductivity, but the radii of Cu1+ and Zn2+ are also nearly identical, 

so this is also expect to be a minor effect.  

 

 

Figure S15: Computed lattice thermal conductivity with (doted line) and without (solid line) the 

inclusion of mass-disordering scattering of NdCuZnP2 using CLSD.  Due to the small mass 

difference of Cu and Zn, mass-disordering scattering barely affects the lattice thermal 

conductivity. 
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